File size: 10,465 Bytes
a65550c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX
from typing import Dict, Optional, Sequence, List
import transformers
import re

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict:
    roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}

    im_start, im_end = tokenizer.additional_special_tokens_ids
    nl_tokens = tokenizer("\n").input_ids
    _system = tokenizer("system").input_ids + nl_tokens
    _user = tokenizer("user").input_ids + nl_tokens
    _assistant = tokenizer("assistant").input_ids + nl_tokens

    # Apply prompt templates
    input_ids, targets = [], []

    source = sources
    if roles[source[0]["from"]] != roles["human"]:
        source = source[1:]

    input_id, target = [], []
    system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
    input_id += system
    target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
    assert len(input_id) == len(target)
    for j, sentence in enumerate(source):
        role = roles[sentence["from"]]
        if has_image and sentence["value"] is not None and "<image>" in sentence["value"]:
            num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"]))
            texts = sentence["value"].split('<image>')
            _input_id = tokenizer(role).input_ids + nl_tokens 
            for i,text in enumerate(texts):
                _input_id += tokenizer(text).input_ids 
                if i<len(texts)-1:
                    _input_id += [IMAGE_TOKEN_INDEX] + nl_tokens
            _input_id += [im_end] + nl_tokens
            assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image
        else:
            if sentence["value"] is None:
                _input_id = tokenizer(role).input_ids + nl_tokens
            else:
                _input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
        input_id += _input_id
        if role == "<|im_start|>user":
            _target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens
        elif role == "<|im_start|>assistant":
            _target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens
        else:
            raise NotImplementedError
        target += _target

    input_ids.append(input_id)
    targets.append(target)
    input_ids = torch.tensor(input_ids, dtype=torch.long)
    targets = torch.tensor(targets, dtype=torch.long)
    return input_ids

def eval_model(args):
    
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    # Data
    with open(os.path.expanduser(args.question_file)) as f:
        questions = json.load(f)
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    
    for line in tqdm(questions):
        idx = line["sample_id"]
        question_type = line["metadata"]["question_type"]
        dataset_name = line["metadata"]["dataset"]
        gt = line["conversations"][1]["value"]

        image_files = line["image"]
        qs = line["conversations"][0]["value"]
        cur_prompt = args.extra_prompt + qs

        args.conv_mode = "qwen_1_5"

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = preprocess_qwen([line["conversations"][0],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda()
        img_num = list(input_ids.squeeze()).count(IMAGE_TOKEN_INDEX)

        image_tensors = []
        for image_file in image_files:
            image = Image.open(os.path.join(args.image_folder, image_file))
            image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
            image_tensors.append(image_tensor.half().cuda())
        # image_tensors = torch.cat(image_tensors, dim=0)

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensors,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                top_p=args.top_p,
                num_beams=args.num_beams,
                # no_repeat_ngram_size=3,
                max_new_tokens=1024,
                use_cache=True)

        
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({
                                   "dataset": dataset_name,
                                   "sample_id": idx,
                                   "prompt": cur_prompt,
                                   "pred_response": outputs,
                                   "gt_response": gt,
                                   "shortuuid": ans_id,
                                   "model_id": model_name,
                                   "question_type": question_type,
                                   }) + "\n")
        ans_file.flush()

        if len(line["conversations"]) > 2:

            for i in range(2, len(line["conversations"]), 2):
                input_ids = torch.cat((input_ids, output_ids), dim=1)

                gt = line["conversations"][i + 1]["value"]
                qs = line["conversations"][i]["value"]
                cur_prompt = args.extra_prompt + qs

                args.conv_mode = "qwen_1_5"

                conv = conv_templates[args.conv_mode].copy()
                conv.append_message(conv.roles[0], qs)
                conv.append_message(conv.roles[1], None)
                prompt = conv.get_prompt()

                input_ids_new = preprocess_qwen([line["conversations"][i],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda()
                input_ids = torch.cat((input_ids, input_ids_new), dim=1)
                img_num = list(input_ids_new.squeeze()).count(IMAGE_TOKEN_INDEX)

                stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
                keywords = [stop_str]
                stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

                with torch.inference_mode():
                    output_ids = model.generate(
                        input_ids,
                        images=image_tensors,
                        do_sample=True if args.temperature > 0 else False,
                        temperature=args.temperature,
                        top_p=args.top_p,
                        num_beams=args.num_beams,
                        # no_repeat_ngram_size=3,
                        max_new_tokens=1024,
                        use_cache=True)
        
                outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
                outputs = outputs.strip()
                if outputs.endswith(stop_str):
                    outputs = outputs[:-len(stop_str)]
                outputs = outputs.strip()

                ans_id = shortuuid.uuid()
                ans_file.write(json.dumps({
                                        "dataset": dataset_name,
                                        "sample_id": idx,
                                        "prompt": cur_prompt,
                                        "pred_response": outputs,
                                        "gt_response": gt,
                                        "shortuuid": ans_id,
                                        "model_id": model_name,
                                        "question_type": question_type,
                                        }) + "\n")
                ans_file.flush()


    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--extra-prompt", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--test_size", type=int, default=10000000)
    args = parser.parse_args()

    eval_model(args)