File size: 14,853 Bytes
a65550c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
import torch
from llava.model import *
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.utils import rank0_print


def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", attn_implementation="flash_attention_2", customized_config=None, **kwargs):
    kwargs = {"device_map": device_map}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
    else:
        kwargs["torch_dtype"] = torch.float16

    if customized_config is not None:
        kwargs["config"] = customized_config

    if "llava" in model_name.lower():
        # Load LLaVA model
        if "lora" in model_name.lower() and model_base is None:
            warnings.warn(
                "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
            )
        if "lora" in model_name.lower() and model_base is not None:
            lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            rank0_print("Loading LLaVA from base model...")
            if "mixtral" in model_name.lower():
                from llava.model.language_model.llava_mixtral import LlavaMixtralConfig

                lora_cfg_pretrained = LlavaMixtralConfig.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            elif "mistral" in model_name.lower():
                from llava.model.language_model.llava_mistral import LlavaMistralConfig

                lora_cfg_pretrained = LlavaMistralConfig.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            elif "gemma" in model_name.lower():
                from llava.model.language_model.llava_gemma import LlavaGemmaConfig

                lora_cfg_pretrained = LlavaGemmaConfig.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            else:
                from llava.model.language_model.llava_llama import LlavaConfig

                lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs)

            token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
            if model.lm_head.weight.shape[0] != token_num:
                model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
                model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))

            rank0_print("Loading additional LLaVA weights...")
            if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
                non_lora_trainables = torch.load(os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu")
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download

                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
                    return torch.load(cache_file, map_location="cpu")

                non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")
            non_lora_trainables = {(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()}
            if any(k.startswith("model.model.") for k in non_lora_trainables):
                non_lora_trainables = {(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()}
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel

            rank0_print("Loading LoRA weights...")
            model = PeftModel.from_pretrained(model, model_path)
            rank0_print("Merging LoRA weights...")
            model = model.merge_and_unload()
            rank0_print("Model is loaded...")
        elif model_base is not None:
            # this may be mm projector only
            rank0_print(f"Loading LLaVA from base model {model_base}...")
            if "mixtral" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            elif "mistral" in model_name.lower() or "zephyr" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            elif "gemma" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            elif (
                "wizardlm-2" in model_name.lower()
                and "vicuna" in model_name.lower()
                or "llama" in model_name.lower()
                or "yi" in model_name.lower()
                or "nous-hermes" in model_name.lower()
                or "llava-v1.6-34b" in model_name.lower()
                or "llava-v1.5" in model_name.lower()
            ):
                from llava.model.language_model.llava_llama import LlavaConfig

                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                if customized_config is None:
                    llava_cfg = LlavaConfig.from_pretrained(model_path)
                    if "v1.5" in model_name.lower():
                        llava_cfg.delay_load = True  # a workaround for correctly loading v1.5 models
                else:
                    llava_cfg = customized_config

                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                llava_cfg = LlavaConfig.from_pretrained(model_path)
                model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=llava_cfg, **kwargs)
            else:
                raise ValueError(f"Model {model_name} not supported")

            mm_projector_weights = torch.load(os.path.join(model_path, "mm_projector.bin"), map_location="cpu")
            mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
            model.load_state_dict(mm_projector_weights, strict=False)
        else:
            rank0_print(f"Loaded LLaVA model: {model_path}")
            if "mixtral" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                model = LlavaMixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs)
            elif "mistral" in model_name.lower() or "zephyr" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs)
            elif (
                "wizardlm-2" in model_name.lower()
                and "vicuna" in model_name.lower()
                or "llama" in model_name.lower()
                or "yi" in model_name.lower()
                or "nous-hermes" in model_name.lower()
                or "llava-v1.6-34b" in model_name.lower()
                or "llava-v1.5" in model_name.lower()
            ):
                from llava.model.language_model.llava_llama import LlavaConfig

                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                if customized_config is None:
                    llava_cfg = LlavaConfig.from_pretrained(model_path)
                    if "v1.5" in model_name.lower():
                        llava_cfg.delay_load = True  # a workaround for correctly loading v1.5 models
                else:
                    llava_cfg = customized_config

                model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs)
            elif "qwen" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs)
            elif "gemma" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = LlavaGemmaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs)
            else:
                rank0_print("\n\n\nWarning : No matching llava architecture, auto load llava_llama. If it is not intended, specify it in model_name\n\n\n")
                try:
                    from llava.model.language_model.llava_llama import LlavaConfig

                    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                    if customized_config is None:
                        llava_cfg = LlavaConfig.from_pretrained(model_path)
                        if "v1.5" in model_path.lower():
                            llava_cfg.delay_load = True  # a workaround for correctly loading v1.5 models
                    else:
                        llava_cfg = customized_config
                    model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs)
                except:
                    raise ValueError(f"Model {model_name} not supported")

    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel

            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print("Convert to FP16...")
            model.to(torch.float16)
        else:
            use_fast = False
            if "mpt" in model_name.lower().replace("prompt", ""):
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)

    rank0_print(f"Model Class: {model.__class__.__name__}")
    image_processor = None

    if "llava" in model_name.lower():
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        model.resize_token_embeddings(len(tokenizer))

        vision_tower = model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model(device_map=device_map)
        if device_map != "auto":
            vision_tower.to(device="cuda", dtype=torch.float16)
        image_processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    elif hasattr(model.config, "max_position_embeddings"):
        context_len = model.config.max_position_embeddings
    elif hasattr(model.config, "tokenizer_model_max_length"):
        context_len = model.config.tokenizer_model_max_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len