Pangea / llava /mm_utils.py
HaoZhang534
first
a65550c
raw
history blame
16 kB
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import torch
from transformers import StoppingCriteria
from llava.constants import IMAGE_TOKEN_INDEX
def resize_and_center_crop(image, shortest_edge_length):
# Calculate new dimensions and resize
aspect_ratio = float(image.width) / float(image.height)
if aspect_ratio > 1:
new_width = int(shortest_edge_length * aspect_ratio)
new_height = shortest_edge_length
else:
new_width = shortest_edge_length
new_height = int(shortest_edge_length / aspect_ratio)
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
# Calculate the position and perform the center crop
left = (new_width - shortest_edge_length) / 2
top = (new_height - shortest_edge_length) / 2
right = (new_width + shortest_edge_length) / 2
bottom = (new_height + shortest_edge_length) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
def auto_pad_images(image, grid_params):
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
assert len(grid_params) > 0, "Grid parameters should not be empty"
# Step 1: Calculate and find the closest aspect ratio
input_width, input_height = image.size
input_aspect_ratio = input_width / input_height
candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
resize_width, resize_height = target_resolution
if input_width > input_height:
resize_height = int(resize_width / input_aspect_ratio)
else:
resize_width = int(resize_height * input_aspect_ratio)
resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
# Step 5: Pad the resized image if necessary to match the target resolution
pad_width = target_resolution[0] - resize_width
pad_height = target_resolution[1] - resize_height
padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
return padded_image
def extract_patches(image, patch_size, overlap_ratio):
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
assert patch_size > 0, "Patch size should be greater than 0"
assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
W, H = image.size
patches = []
stride = int(patch_size * (1 - overlap_ratio))
num_patches_y = (H - patch_size) // stride + 1
num_patches_x = (W - patch_size) // stride + 1
y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
for y in range(y_start, y_start + num_patches_y * stride, stride):
for x in range(x_start, x_start + num_patches_x * stride, stride):
patch = image.crop((x, y, x + patch_size, y + patch_size))
patches.append(patch)
return patches
def process_highres_image_crop_split(image, data_args, processor=None):
crop_resolution = data_args.image_crop_resolution
split_resolution = data_args.image_split_resolution
if processor is None:
processor = data_args.image_processor
image_crop = resize_and_center_crop(image, crop_resolution)
image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def process_highres_image(image, processor, grid_pinpoints):
grid_params = [int(x) for x in grid_pinpoints.split(",")]
width_height = max(image.size)
fit_grid_params = [x for x in grid_params if x >= width_height]
if len(fit_grid_params) == 0:
select_size = max(grid_params)
else:
select_size = min(fit_grid_params)
# FIXME: always select the 448
select_size = max(grid_params)
image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
# FIXME: this seems to be a bug that it always resizes instead of padding
image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
image_padded = image_padded.resize((select_size, select_size))
image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
image_patches = [image_original_resize] + image_patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Determine which dimension (width or height) to fill
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
# Width will be filled completely
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
# Height will be filled completely
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if isinstance(grid_pinpoints, str):
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
grid_pinpoints = grid_pinpoints.replace(" ", "").replace("x", ",")[1:-1].split("),(")
grid_pinpoints = [[int(x) * patch_size for x in item.split(",")] for item in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# Convert grid_pinpoints from string to list
if isinstance(grid_pinpoints, str):
vis_encoder_size = processor.size[0]
assert vis_encoder_size in [224, 336, 384, 448, 512], "vis_encoder_size should be in [224, 336, 384, 448, 512]"
grid_pinpoints = grid_pinpoints.replace(" ", "").replace("x", ",")[1:-1].split("),(")
grid_pinpoints = [[int(x) * vis_encoder_size for x in item.split(",")] for item in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size["height"])
# FIXME: this seems to be a bug that it resizes instead of pad.
# but to keep it consistent with previous, i will keep it as it is
# TODO: uncomment below to ablate with the padding
if isinstance(processor.size, dict):
shortest_edge = processor.size["shortest_edge"]
else:
shortest_edge = min(processor.size)
image_original_resize = image.resize((shortest_edge, shortest_edge))
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_images(images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == "highres":
for image in images:
image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
new_images.append(image)
elif image_aspect_ratio == "anyres":
for image in images:
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
new_images.append(image)
elif image_aspect_ratio == "crop_split":
for image in images:
image = process_highres_image_crop_split(image, model_cfg, image_processor)
new_images.append(image)
elif image_aspect_ratio == "pad":
for image in images:
image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
new_images.append(image)
else:
return image_processor(images, return_tensors="pt")["pixel_values"]
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False