Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import math | |
from transformers.models.clip.modeling_clip import CLIPVisionModel | |
class PoolerProjector(nn.Module): | |
def __init__(self, config, vision_cfg): | |
super().__init__() | |
self._config = config | |
self.hw = vision_cfg.image_size // vision_cfg.patch_size | |
self.conv_pool = nn.Conv2d(config.mm_hidden_size, config.hidden_size, kernel_size=2, stride=2) | |
self.proj = nn.Sequential( | |
nn.GELU(), | |
nn.Linear(config.hidden_size, config.hidden_size), | |
) | |
def forward(self, x, *args, **kwargs): | |
height = width = self.hw | |
assert height * width == x.shape[1] | |
x = x.view(x.shape[0], height, width, -1).permute(0, 3, 1, 2) | |
x = self.conv_pool(x) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
def config(self): | |
return {"mm_projector_type": "pooler"} | |