# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import shutil from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig import torch from llava.model import * from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.utils import rank0_print def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", attn_implementation="flash_attention_2", customized_config=None, **kwargs): kwargs = {"device_map": device_map} if load_8bit: kwargs["load_in_8bit"] = True elif load_4bit: kwargs["load_in_4bit"] = True kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") else: kwargs["torch_dtype"] = torch.float16 if customized_config is not None: kwargs["config"] = customized_config if "llava" in model_name.lower(): # Load LLaVA model if "lora" in model_name.lower() and model_base is None: warnings.warn( "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." ) if "lora" in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) rank0_print("Loading LLaVA from base model...") if "mixtral" in model_name.lower(): from llava.model.language_model.llava_mixtral import LlavaMixtralConfig lora_cfg_pretrained = LlavaMixtralConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) elif "mistral" in model_name.lower(): from llava.model.language_model.llava_mistral import LlavaMistralConfig lora_cfg_pretrained = LlavaMistralConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) elif "gemma" in model_name.lower(): from llava.model.language_model.llava_gemma import LlavaGemmaConfig lora_cfg_pretrained = LlavaGemmaConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) else: from llava.model.language_model.llava_llama import LlavaConfig lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) rank0_print("Loading additional LLaVA weights...") if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): non_lora_trainables = torch.load(os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu") else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location="cpu") non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") non_lora_trainables = {(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()} if any(k.startswith("model.model.") for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel rank0_print("Loading LoRA weights...") model = PeftModel.from_pretrained(model, model_path) rank0_print("Merging LoRA weights...") model = model.merge_and_unload() rank0_print("Model is loaded...") elif model_base is not None: # this may be mm projector only rank0_print(f"Loading LLaVA from base model {model_base}...") if "mixtral" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) elif "gemma" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) elif ( "wizardlm-2" in model_name.lower() and "vicuna" in model_name.lower() or "llama" in model_name.lower() or "yi" in model_name.lower() or "nous-hermes" in model_name.lower() or "llava-v1.6-34b" in model_name.lower() or "llava-v1.5" in model_name.lower() ): from llava.model.language_model.llava_llama import LlavaConfig tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) if customized_config is None: llava_cfg = LlavaConfig.from_pretrained(model_path) if "v1.5" in model_name.lower(): llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models else: llava_cfg = customized_config tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) llava_cfg = LlavaConfig.from_pretrained(model_path) model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=llava_cfg, **kwargs) else: raise ValueError(f"Model {model_name} not supported") mm_projector_weights = torch.load(os.path.join(model_path, "mm_projector.bin"), map_location="cpu") mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: rank0_print(f"Loaded LLaVA model: {model_path}") if "mixtral" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path) model = LlavaMixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path) model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) elif ( "wizardlm-2" in model_name.lower() and "vicuna" in model_name.lower() or "llama" in model_name.lower() or "yi" in model_name.lower() or "nous-hermes" in model_name.lower() or "llava-v1.6-34b" in model_name.lower() or "llava-v1.5" in model_name.lower() ): from llava.model.language_model.llava_llama import LlavaConfig tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) if customized_config is None: llava_cfg = LlavaConfig.from_pretrained(model_path) if "v1.5" in model_name.lower(): llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models else: llava_cfg = customized_config model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) elif "qwen" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) elif "gemma" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaGemmaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) else: rank0_print("\n\n\nWarning : No matching llava architecture, auto load llava_llama. If it is not intended, specify it in model_name\n\n\n") try: from llava.model.language_model.llava_llama import LlavaConfig tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) if customized_config is None: llava_cfg = LlavaConfig.from_pretrained(model_path) if "v1.5" in model_path.lower(): llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models else: llava_cfg = customized_config model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) except: raise ValueError(f"Model {model_name} not supported") else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print("Convert to FP16...") model.to(torch.float16) else: use_fast = False if "mpt" in model_name.lower().replace("prompt", ""): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) rank0_print(f"Model Class: {model.__class__.__name__}") image_processor = None if "llava" in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model(device_map=device_map) if device_map != "auto": vision_tower.to(device="cuda", dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length elif hasattr(model.config, "max_position_embeddings"): context_len = model.config.max_position_embeddings elif hasattr(model.config, "tokenizer_model_max_length"): context_len = model.config.tokenizer_model_max_length else: context_len = 2048 return tokenizer, model, image_processor, context_len