File size: 9,492 Bytes
54200b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import sys
import time
from pathlib import Path
from typing import Any, Literal, Optional

import lightning as L
import torch
import torch._dynamo.config
import torch._inductor.config
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from model import *
from utils import *
from tokenizer import *

def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
    if torch._dynamo.is_compiling():
        # Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
        distribution = torch.empty_like(probs).exponential_(1)
        return torch.argmax(probs / distribution, dim=-1, keepdim=True)
    return torch.multinomial(probs, num_samples=1)


def sample(logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None) -> torch.Tensor:
    logits = logits[0, -1]
    # optionally crop the logits to only the top k options
    if top_k is not None:
        v, i = torch.topk(logits, min(top_k, logits.size(-1)))
        # do not use `torch.where` as in nanogpt because it will repeat top-k collisions
        logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
    # optionally scale the logits and sample from a probability distribution
    if temperature > 0.0:
        probs = torch.nn.functional.softmax(logits / temperature, dim=-1)
        return multinomial_num_samples_1(probs)
    return torch.argmax(logits, dim=-1, keepdim=True)


def next_token(model: GPT, input_pos: torch.Tensor, x: torch.Tensor, **kwargs: Any) -> torch.Tensor:
    logits = model(x, input_pos)
    next = sample(logits, **kwargs)
    return next.type_as(x)


@torch.inference_mode()
def generate(
    model: GPT,
    prompt: torch.Tensor,
    max_returned_tokens: int,
    *,
    temperature: float = 1.0,
    top_k: Optional[int] = None,
    eos_id: Optional[int] = None,
) -> torch.Tensor:
    """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.

    The implementation of this function is modified from A. Karpathy's nanoGPT.

    Args:
        model: The model to use.
        prompt: Tensor of shape (T) with indices of the prompt sequence.
        max_returned_tokens: The maximum number of tokens to return (given plus generated).
        temperature: Scales the predicted logits by 1 / temperature.
        top_k: If specified, only sample among the tokens with the k highest probabilities.
        eos_id: If specified, stop generating any more token once the <eos> token is triggered.
    """
    T = prompt.size(0)
    assert max_returned_tokens > T
    if model.max_seq_length < max_returned_tokens - 1:
        # rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
        # data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
        # not support it to avoid negatively impacting the overall speed
        raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")

    device = prompt.device
    tokens = [prompt]
    input_pos = torch.tensor([T], device=device)
    token = next_token(
        model, torch.arange(0, T, device=device), prompt.view(1, -1), temperature=temperature, top_k=top_k
    ).clone()
    tokens.append(token)
    for _ in range(2, max_returned_tokens - T + 1):
        token = next_token(model, input_pos, token.view(1, -1), temperature=temperature, top_k=top_k).clone()
        tokens.append(token)
        if token == eos_id:
            break
        input_pos = input_pos.add_(1)
    return torch.cat(tokens)


def main(
    prompt: str = "What food do llamas eat?",
    *,
    num_samples: int = 1,
    max_new_tokens: int = 50,
    top_k: Optional[int] = 200,
    temperature: float = 0.8,
    checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"),
    quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None,
    strategy: str = "auto",
    devices: int = 1,
    precision: Optional[str] = None,
    compile: bool = False,
    model_name: str = "pythia_160m_hf"
) -> None:
    """Generates text samples based on a pre-trained model and tokenizer.

    Args:
        prompt: The prompt string to use for generating the samples.
        num_samples: The number of text samples to generate.
        max_new_tokens: The number of generation steps to take.
        top_k: The number of top most probable tokens to consider in the sampling process.
        temperature: A value controlling the randomness of the sampling process. Higher values result in more random
            samples.
        checkpoint_dir: The checkpoint directory to load.
        quantize: Whether to quantize the model and using which method:
            - bnb.nf4, bnb.nf4-dq, bnb.fp4, bnb.fp4-dq: 4-bit quantization from bitsandbytes
            - bnb.int8: 8-bit quantization from bitsandbytes
            - gptq.int4: 4-bit quantization from GPTQ
            for more details, see https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md
        strategy: Indicates the Fabric strategy setting to use.
        devices: How many devices to use.
        precision: Indicates the Fabric precision setting to use.
        compile: Whether to compile the model.
    """
    precision = precision or get_default_supported_precision(training=False)

    plugins = None
    if quantize is not None:
        if devices > 1:
            raise NotImplementedError(
                "Quantization is currently not supported for multi-GPU training. Please set devices=1 when using the"
                " --quantize flag."
            )
        if quantize.startswith("bnb."):
            if "mixed" in precision:
                raise ValueError("Quantization and mixed precision is not supported.")
            dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[precision]
            plugins = BitsandbytesPrecision(quantize[4:], dtype)
            precision = None

    if strategy == "fsdp":
        strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)

    fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
    fabric.launch()

    check_valid_checkpoint_dir(checkpoint_dir, model_name)

    config = Config.from_json(checkpoint_dir / "lit_config.json")

    if quantize == "gptq.int4":
        model_file = "lit_model_gptq.4bit.pth"
        if not (checkpoint_dir / model_file).is_file():
            raise ValueError("Please run `python quantize/gptq.py` first")
    else:
        if model_name == "pythia_160m_deduped_huggingface":
            model_file = "pythia_160m_deduped_hf.pth"
        elif model_name == "pythia_160m_deduped_custom":
            model_file = "pythia_160m_deduped_custom.pth"
        else:
            model_file = "lit_model.pth"
    checkpoint_path = checkpoint_dir / model_file

    tokenizer = Tokenizer(checkpoint_dir)
    encoded = tokenizer.encode(prompt, device=fabric.device)
    prompt_length = encoded.size(0)
    max_returned_tokens = prompt_length + max_new_tokens

    fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr)
    t0 = time.perf_counter()
    with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
        model = GPT(config)
    fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
    with fabric.init_tensor():
        # set the max_seq_length to limit the memory usage to what we need
        model.max_seq_length = max_returned_tokens
        # enable the kv cache
        model.set_kv_cache(batch_size=1)
    model.eval()

    if compile:
        torch._dynamo.config.automatic_dynamic_shapes = True
        torch._inductor.config.triton.unique_kernel_names = True
        torch._inductor.config.coordinate_descent_tuning = True
        global next_token
        next_token = torch.compile(next_token, mode="reduce-overhead")

    model = fabric.setup_module(model)

    t0 = time.perf_counter()
    load_checkpoint(fabric, model, checkpoint_path)
    fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)

    L.seed_everything(1234)
    print(f'num_samples is {num_samples}')
    output_msg_list = []
    for i in range(num_samples):
        t0 = time.perf_counter()
        y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
        t = time.perf_counter() - t0
        for block in model.transformer.h:
            block.attn.kv_cache.reset_parameters()
        output_msg = tokenizer.decode(y)
        tokens_generated = y.size(0) - prompt_length
        output_msg_list.append(output_msg)
        fabric.print(
            f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr
        )
    if fabric.device.type == "cuda":
        fabric.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr)
    return output_msg_list

if __name__ == "__main__":
    from jsonargparse import CLI

    torch.set_float32_matmul_precision("high")
    output_msg_list = CLI(main)