Spaces:
Runtime error
Runtime error
from cProfile import label | |
import dataclasses | |
from distutils.command.check import check | |
from doctest import Example | |
import gradio as gr | |
import os | |
import sys | |
import numpy as np | |
import logging | |
import torch | |
import pytorch_seed | |
import time | |
import math | |
import tempfile | |
from typing import Optional, Tuple, Union | |
import matplotlib.pyplot as plt | |
from loguru import logger | |
from PIL import Image | |
from torch import Tensor | |
from torchaudio.backend.common import AudioMetaData | |
from df import config | |
from df.enhance import enhance, init_df, load_audio, save_audio | |
from df.io import resample | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True) | |
model = model.to(device=device).eval() | |
fig_noisy: plt.Figure | |
fig_enh: plt.Figure | |
ax_noisy: plt.Axes | |
ax_enh: plt.Axes | |
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4)) | |
fig_noisy.set_tight_layout(True) | |
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4)) | |
fig_enh.set_tight_layout(True) | |
NOISES = { | |
"None": None, | |
"Kitchen": "samples/dkitchen.wav", | |
"Living Room": "samples/dliving.wav", | |
"River": "samples/nriver.wav", | |
"Cafe": "samples/scafe.wav", | |
} | |
from xml.sax import saxutils | |
from bark.api import generate_with_settings | |
from bark.api import save_as_prompt | |
from util.settings import Settings | |
#import nltk | |
from bark import SAMPLE_RATE | |
from cloning.clonevoice import clone_voice | |
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode | |
from scipy.io.wavfile import write as write_wav | |
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml | |
from datetime import datetime | |
from tqdm.auto import tqdm | |
from util.helper import create_filename, add_id3_tag | |
from swap_voice import swap_voice_from_audio | |
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics | |
from training.train import training_prepare_files, train | |
# Denoise | |
def mix_at_snr(clean, noise, snr, eps=1e-10): | |
"""Mix clean and noise signal at a given SNR. | |
Args: | |
clean: 1D Tensor with the clean signal to mix. | |
noise: 1D Tensor of shape. | |
snr: Signal to noise ratio. | |
Returns: | |
clean: 1D Tensor with gain changed according to the snr. | |
noise: 1D Tensor with the combined noise channels. | |
mix: 1D Tensor with added clean and noise signals. | |
""" | |
clean = torch.as_tensor(clean).mean(0, keepdim=True) | |
noise = torch.as_tensor(noise).mean(0, keepdim=True) | |
if noise.shape[1] < clean.shape[1]: | |
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1])))) | |
max_start = int(noise.shape[1] - clean.shape[1]) | |
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0 | |
logger.debug(f"start: {start}, {clean.shape}") | |
noise = noise[:, start : start + clean.shape[1]] | |
E_speech = torch.mean(clean.pow(2)) + eps | |
E_noise = torch.mean(noise.pow(2)) | |
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps) | |
noise = noise / K | |
mixture = clean + noise | |
logger.debug("mixture: {mixture.shape}") | |
assert torch.isfinite(mixture).all() | |
max_m = mixture.abs().max() | |
if max_m > 1: | |
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}") | |
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m | |
return clean, noise, mixture | |
def load_audio_gradio( | |
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int | |
) -> Optional[Tuple[Tensor, AudioMetaData]]: | |
if audio_or_file is None: | |
return None | |
if isinstance(audio_or_file, str): | |
if audio_or_file.lower() == "none": | |
return None | |
# First try default format | |
audio, meta = load_audio(audio_or_file, sr) | |
else: | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
assert isinstance(audio_or_file, (tuple, list)) | |
meta.sample_rate, audio_np = audio_or_file | |
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not. | |
audio_np = audio_np.reshape(audio_np.shape[0], -1).T | |
if audio_np.dtype == np.int16: | |
audio_np = (audio_np / (1 << 15)).astype(np.float32) | |
elif audio_np.dtype == np.int32: | |
audio_np = (audio_np / (1 << 31)).astype(np.float32) | |
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr) | |
return audio, meta | |
def demo_fn(speech_upl: str, noise_type: str, snr: int, mic_input: str): | |
if mic_input: | |
speech_upl = mic_input | |
sr = config("sr", 48000, int, section="df") | |
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}") | |
snr = int(snr) | |
noise_fn = NOISES[noise_type] | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
max_s = 10 # limit to 10 seconds | |
if speech_upl is not None: | |
sample, meta = load_audio(speech_upl, sr) | |
max_len = max_s * sr | |
if sample.shape[-1] > max_len: | |
start = torch.randint(0, sample.shape[-1] - max_len, ()).item() | |
sample = sample[..., start : start + max_len] | |
else: | |
sample, meta = load_audio("samples/p232_013_clean.wav", sr) | |
sample = sample[..., : max_s * sr] | |
if sample.dim() > 1 and sample.shape[0] > 1: | |
assert ( | |
sample.shape[1] > sample.shape[0] | |
), f"Expecting channels first, but got {sample.shape}" | |
sample = sample.mean(dim=0, keepdim=True) | |
logger.info(f"Loaded sample with shape {sample.shape}") | |
if noise_fn is not None: | |
noise, _ = load_audio(noise_fn, sr) # type: ignore | |
logger.info(f"Loaded noise with shape {noise.shape}") | |
_, _, sample = mix_at_snr(sample, noise, snr) | |
logger.info("Start denoising audio") | |
enhanced = enhance(model, df, sample) | |
logger.info("Denoising finished") | |
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0) | |
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1) | |
enhanced = enhanced * lim | |
if meta.sample_rate != sr: | |
enhanced = resample(enhanced, sr, meta.sample_rate) | |
sample = resample(sample, sr, meta.sample_rate) | |
sr = meta.sample_rate | |
noisy_wav = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name | |
save_audio(noisy_wav, sample, sr) | |
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name | |
save_audio(enhanced_wav, enhanced, sr) | |
logger.info(f"saved audios: {noisy_wav}, {enhanced_wav}") | |
ax_noisy.clear() | |
ax_enh.clear() | |
# noisy_wav = gr.make_waveform(noisy_fn, bar_count=200) | |
# enh_wav = gr.make_waveform(enhanced_fn, bar_count=200) | |
return noisy_wav, enhanced_wav | |
def specshow( | |
spec, | |
ax=None, | |
title=None, | |
xlabel=None, | |
ylabel=None, | |
sr=48000, | |
n_fft=None, | |
hop=None, | |
t=None, | |
f=None, | |
vmin=-100, | |
vmax=0, | |
xlim=None, | |
ylim=None, | |
cmap="inferno", | |
): | |
"""Plots a spectrogram of shape [F, T]""" | |
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec | |
if ax is not None: | |
set_title = ax.set_title | |
set_xlabel = ax.set_xlabel | |
set_ylabel = ax.set_ylabel | |
set_xlim = ax.set_xlim | |
set_ylim = ax.set_ylim | |
else: | |
ax = plt | |
set_title = plt.title | |
set_xlabel = plt.xlabel | |
set_ylabel = plt.ylabel | |
set_xlim = plt.xlim | |
set_ylim = plt.ylim | |
if n_fft is None: | |
if spec.shape[0] % 2 == 0: | |
n_fft = spec.shape[0] * 2 | |
else: | |
n_fft = (spec.shape[0] - 1) * 2 | |
hop = hop or n_fft // 4 | |
if t is None: | |
t = np.arange(0, spec_np.shape[-1]) * hop / sr | |
if f is None: | |
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000 | |
im = ax.pcolormesh( | |
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap | |
) | |
if title is not None: | |
set_title(title) | |
if xlabel is not None: | |
set_xlabel(xlabel) | |
if ylabel is not None: | |
set_ylabel(ylabel) | |
if xlim is not None: | |
set_xlim(xlim) | |
if ylim is not None: | |
set_ylim(ylim) | |
return im | |
def spec_im( | |
audio: torch.Tensor, | |
figsize=(15, 5), | |
colorbar=False, | |
colorbar_format=None, | |
figure=None, | |
labels=True, | |
**kwargs, | |
) -> Image: | |
audio = torch.as_tensor(audio) | |
if labels: | |
kwargs.setdefault("xlabel", "Time [s]") | |
kwargs.setdefault("ylabel", "Frequency [Hz]") | |
n_fft = kwargs.setdefault("n_fft", 1024) | |
hop = kwargs.setdefault("hop", 512) | |
w = torch.hann_window(n_fft, device=audio.device) | |
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False) | |
spec = spec.div_(w.pow(2).sum()) | |
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10) | |
kwargs.setdefault("vmax", max(0.0, spec.max().item())) | |
if figure is None: | |
figure = plt.figure(figsize=figsize) | |
figure.set_tight_layout(True) | |
if spec.dim() > 2: | |
spec = spec.squeeze(0) | |
im = specshow(spec, **kwargs) | |
if colorbar: | |
ckwargs = {} | |
if "ax" in kwargs: | |
if colorbar_format is None: | |
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None: | |
colorbar_format = "%+2.0f dB" | |
ckwargs = {"ax": kwargs["ax"]} | |
plt.colorbar(im, format=colorbar_format, **ckwargs) | |
figure.canvas.draw() | |
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb()) | |
def toggle(choice): | |
if choice == "mic": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
else: | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) | |
# Bark | |
settings = Settings('config.yaml') | |
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): | |
# Chunk the text into smaller pieces then combine the generated audio | |
# generation settings | |
if selected_speaker == 'None': | |
selected_speaker = None | |
voice_name = selected_speaker | |
if text == None or len(text) < 1: | |
if selected_speaker == None: | |
raise gr.Error('No text entered!') | |
# Extract audio data from speaker if no text and speaker selected | |
voicedata = _load_history_prompt(voice_name) | |
audio_arr = codec_decode(voicedata["fine_prompt"]) | |
result = create_filename(settings.output_folder_path, "None", "extract",".wav") | |
save_wav(audio_arr, result) | |
return result | |
if batchcount < 1: | |
batchcount = 1 | |
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence | |
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence | |
use_last_generation_as_history = "Use last generation as history" in complete_settings | |
save_last_generation = "Save generation as Voice" in complete_settings | |
for l in range(batchcount): | |
currentseed = seed | |
if seed != None and seed > 2**32 - 1: | |
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") | |
currentseed = None | |
if currentseed == None or currentseed <= 0: | |
currentseed = np.random.default_rng().integers(1, 2**32 - 1) | |
assert(0 < currentseed and currentseed < 2**32) | |
progress(0, desc="Generating") | |
full_generation = None | |
all_parts = [] | |
complete_text = "" | |
text = text.lstrip() | |
if is_ssml(text): | |
list_speak = create_clips_from_ssml(text) | |
prev_speaker = None | |
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): | |
selected_speaker = clip[0] | |
# Add pause break between speakers | |
if i > 0 and selected_speaker != prev_speaker: | |
all_parts += [silencelong.copy()] | |
prev_speaker = selected_speaker | |
text = clip[1] | |
text = saxutils.unescape(text) | |
if selected_speaker == "None": | |
selected_speaker = None | |
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") | |
complete_text += text | |
with pytorch_seed.SavedRNG(currentseed): | |
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
currentseed = torch.random.initial_seed() | |
if len(list_speak) > 1: | |
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") | |
save_wav(audio_array, filename) | |
add_id3_tag(filename, text, selected_speaker, currentseed) | |
all_parts += [audio_array] | |
else: | |
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) | |
for i, text in tqdm(enumerate(texts), total=len(texts)): | |
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") | |
complete_text += text | |
if quick_generation == True: | |
with pytorch_seed.SavedRNG(currentseed): | |
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
currentseed = torch.random.initial_seed() | |
else: | |
full_output = use_last_generation_as_history or save_last_generation | |
if full_output: | |
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) | |
else: | |
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format | |
# audio_array = (audio_array * 32767).astype(np.int16) | |
if len(texts) > 1: | |
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") | |
save_wav(audio_array, filename) | |
add_id3_tag(filename, text, selected_speaker, currentseed) | |
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): | |
# save to npz | |
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz") | |
save_as_prompt(voice_name, full_generation) | |
if use_last_generation_as_history: | |
selected_speaker = voice_name | |
all_parts += [audio_array] | |
# Add short pause between sentences | |
if text[-1] in "!?.\n" and i > 1: | |
all_parts += [silenceshort.copy()] | |
# save & play audio | |
result = create_filename(settings.output_folder_path, currentseed, "final",".wav") | |
save_wav(np.concatenate(all_parts), result) | |
# write id3 tag with text truncated to 60 chars, as a precaution... | |
add_id3_tag(result, complete_text, selected_speaker, currentseed) | |
return result | |
def save_wav(audio_array, filename): | |
write_wav(filename, SAMPLE_RATE, audio_array) | |
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): | |
np.savez_compressed( | |
filename, | |
semantic_prompt=semantic_prompt, | |
coarse_prompt=coarse_prompt, | |
fine_prompt=fine_prompt | |
) | |
def on_quick_gen_changed(checkbox): | |
if checkbox == False: | |
return gr.CheckboxGroup.update(visible=True) | |
return gr.CheckboxGroup.update(visible=False) | |
def delete_output_files(checkbox_state): | |
if checkbox_state: | |
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path) | |
if os.path.exists(outputs_folder): | |
purgedir(outputs_folder) | |
return False | |
# https://stackoverflow.com/a/54494779 | |
def purgedir(parent): | |
for root, dirs, files in os.walk(parent): | |
for item in files: | |
# Delete subordinate files | |
filespec = os.path.join(root, item) | |
os.unlink(filespec) | |
for item in dirs: | |
# Recursively perform this operation for subordinate directories | |
purgedir(os.path.join(root, item)) | |
def convert_text_to_ssml(text, selected_speaker): | |
return build_ssml(text, selected_speaker) | |
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)): | |
if selected_step == prepare_training_list[0]: | |
prepare_semantics_from_text() | |
else: | |
prepare_wavs_from_semantics() | |
return None | |
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)): | |
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt") | |
train("./training/data/", save_model_epoch, max_epochs) | |
return None | |
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): | |
settings.selected_theme = themes | |
settings.server_name = input_server_name | |
settings.server_port = input_server_port | |
settings.server_share = input_server_public | |
settings.input_text_desired_length = input_desired_len | |
settings.input_text_max_length = input_max_len | |
settings.silence_sentence = input_silence_break | |
settings.silence_speaker = input_silence_speaker | |
settings.save() | |
def restart(): | |
global restart_server | |
restart_server = True | |
def create_version_html(): | |
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) | |
versions_html = f""" | |
python: <span title="{sys.version}">{python_version}</span> | |
โโขโ | |
torch: {getattr(torch, '__long_version__',torch.__version__)} | |
โโขโ | |
gradio: {gr.__version__} | |
""" | |
return versions_html | |
logger = logging.getLogger(__name__) | |
APPTITLE = "Bark Voice Cloning UI" | |
autolaunch = False | |
if len(sys.argv) > 1: | |
autolaunch = "-autolaunch" in sys.argv | |
if torch.cuda.is_available() == False: | |
os.environ['BARK_FORCE_CPU'] = 'True' | |
logger.warning("No CUDA detected, fallback to CPU!") | |
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') | |
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') | |
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') | |
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') | |
print(f'autolaunch={autolaunch}\n\n') | |
#print("Updating nltk\n") | |
#nltk.download('punkt') | |
print("Preloading Models\n") | |
preload_models() | |
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] | |
tokenizer_language_list = ["de","en", "pl"] | |
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"] | |
seed = -1 | |
server_name = settings.server_name | |
if len(server_name) < 1: | |
server_name = None | |
server_port = settings.server_port | |
if server_port <= 0: | |
server_port = None | |
global run_server | |
global restart_server | |
run_server = True | |
while run_server: | |
# Collect all existing speakers/voices in dir | |
speakers_list = [] | |
for root, dirs, files in os.walk("./bark/assets/prompts"): | |
for file in files: | |
if file.endswith(".npz"): | |
pathpart = root.replace("./bark/assets/prompts", "") | |
name = os.path.join(pathpart, file[:-4]) | |
if name.startswith("/") or name.startswith("\\"): | |
name = name[1:] | |
speakers_list.append(name) | |
speakers_list = sorted(speakers_list, key=lambda x: x.lower()) | |
speakers_list.insert(0, 'None') | |
print(f'Launching {APPTITLE} Server') | |
# Create Gradio Blocks | |
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: | |
gr.Markdown("# <center>๐ถ๐ถโญ - Bark Voice Cloning</center>") | |
gr.Markdown("## <center>๐ค - If you like this space, please star my [github repo](https://github.com/KevinWang676/Bark-Voice-Cloning)</center>") | |
gr.Markdown("### <center>๐ก - Based on [bark-gui](https://github.com/C0untFloyd/bark-gui)</center>") | |
gr.Markdown(f""" You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a> | |
or open in [Colab](https://colab.research.google.com/github/KevinWang676/Bark-Voice-Cloning/blob/main/Bark_Voice_Cloning.ipynb) for quick start ๐ P.S. Voice cloning needs a GPU, but TTS doesn't ๐ | |
""") | |
with gr.Tab("๐๏ธ - Clone Voice"): | |
with gr.Row(): | |
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath") | |
#transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...") | |
with gr.Row(): | |
with gr.Column(): | |
initialname = "/home/user/app/bark/assets/prompts/file" | |
output_voice = gr.Textbox(label="Filename of trained Voice (do not change the initial name)", lines=1, placeholder=initialname, value=initialname, visible=False) | |
with gr.Column(): | |
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1], visible=False) | |
with gr.Row(): | |
clone_voice_button = gr.Button("Create Voice", variant="primary") | |
with gr.Row(): | |
dummy = gr.Text(label="Progress") | |
npz_file = gr.File(label=".npz file") | |
speakers_list.insert(0, npz_file) # add prompt | |
with gr.Tab("๐ต - TTS"): | |
with gr.Row(): | |
with gr.Column(): | |
placeholder = "Enter text here." | |
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder) | |
convert_to_ssml_button = gr.Button("Convert Input Text to SSML") | |
with gr.Column(): | |
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) | |
batchcount = gr.Number(label="Batch count", precision=0, value=1) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") | |
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose โfileโ if you wanna use the custom voice)") | |
with gr.Column(): | |
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") | |
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") | |
with gr.Row(): | |
with gr.Column(): | |
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True) | |
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] | |
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) | |
with gr.Column(): | |
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") | |
with gr.Row(): | |
with gr.Column(): | |
tts_create_button = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
hidden_checkbox = gr.Checkbox(visible=False) | |
button_stop_generation = gr.Button("Stop generation") | |
with gr.Row(): | |
output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
radio = gr.Radio( | |
["mic", "file"], value="file", label="How would you like to upload your audio?", visible=False | |
) | |
mic_input = gr.Mic(label="Input", type="filepath", visible=False) | |
audio_file = output_audio | |
inputs = [ | |
audio_file, | |
gr.Dropdown( | |
label="Add background noise", | |
choices=list(NOISES.keys()), | |
value="None", visible =False, | |
), | |
gr.Dropdown( | |
label="Noise Level (SNR)", | |
choices=["-5", "0", "10", "20"], | |
value="0", visible =False, | |
), | |
mic_input, | |
] | |
btn_denoise = gr.Button("Denoise") | |
with gr.Column(): | |
outputs = [ | |
gr.Audio(type="filepath", label="Noisy audio"), | |
gr.Audio(type="filepath", label="Enhanced audio"), | |
] | |
btn_denoise.click(fn=demo_fn, inputs=inputs, outputs=outputs) | |
radio.change(toggle, radio, [mic_input, audio_file]) | |
with gr.Tab("๐ฎ - Voice Conversion"): | |
with gr.Row(): | |
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) | |
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) | |
with gr.Column(): | |
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose โfileโ if you wanna use the custom voice)") | |
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1) | |
with gr.Row(): | |
swap_voice_button = gr.Button("Generate", variant="primary") | |
with gr.Row(): | |
output_swap = gr.Audio(label="Generated Audio", type="filepath") | |
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) | |
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) | |
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) | |
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) | |
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap) | |
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file]) | |
restart_server = False | |
try: | |
barkgui.queue().launch(show_error=True) | |
except: | |
restart_server = True | |
run_server = False | |
try: | |
while restart_server == False: | |
time.sleep(1.0) | |
except (KeyboardInterrupt, OSError): | |
print("Keyboard interruption in main thread... closing server.") | |
run_server = False | |
barkgui.close() | |