Spaces:
Sleeping
Sleeping
from os import path | |
import streamlit as st | |
import tensorflow as tf | |
import random | |
from transformers import ElectraTokenizerFast, TFElectraForQuestionAnswering | |
from datasets import Dataset, DatasetDict, load_dataset | |
model_hf = "nguyennghia0902/electra-small-discriminator_0.0001_16_15e" | |
tokenizer = ElectraTokenizerFast.from_pretrained(model_hf) | |
reload_model = TFElectraForQuestionAnswering.from_pretrained(model_hf) | |
def predict(question, context): | |
inputs = tokenizer(question, context, return_offsets_mapping=True,return_tensors="tf",max_length=512, truncation=True) | |
offset_mapping = inputs.pop("offset_mapping") | |
outputs = reload_model(**inputs) | |
answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) | |
answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) | |
start_char = offset_mapping[0][answer_start_index][0] | |
end_char = offset_mapping[0][answer_end_index][1] | |
predicted_answer_text = context[start_char:end_char] | |
return predicted_answer_text | |
def main(): | |
st.set_page_config(page_title="Sample in Dataset", page_icon="📝") | |
# giving a title to our page | |
col1, col2 = st.columns([2, 1]) | |
col1.title("Sample in Dataset") | |
new_data = load_dataset("nguyennghia0902/project02_textming_dataset", data_files={'train': 'raw_newformat_data/traindata-00000-of-00001.arrow', 'test': 'raw_newformat_data/testdata-00000-of-00001.arrow'}) | |
sample = random.choice(new_data['test']) | |
sampleQ = sample['question'] | |
sampleC = sample['context'] | |
sampleA = sample['answers']["text"][0] | |
text = st.text_area( | |
"Sample CONTEXT:", | |
sampleC, | |
height=200, | |
) | |
question = st.text_area( | |
"Sample QUESTION: ", | |
sampleQ, | |
height=5, | |
) | |
answer = st.text_area( | |
"True ANSWER:", | |
sampleA, | |
height=5, | |
) | |
# Create a prediction button | |
if st.button("Sample & Predict"): | |
prediction = "" | |
prediction = predict(question, text) | |
if prediction == "": | |
st.error(prediction) | |
else: | |
st.success(prediction) | |
if __name__ == "__main__": | |
print(tf.__version__) | |
main() |