Spaces:
Sleeping
Sleeping
nguyennghia0902
commited on
Commit
•
12d5d83
1
Parent(s):
0f1e0e2
Update SampleQA.py
Browse files- SampleQA.py +14 -17
SampleQA.py
CHANGED
@@ -5,7 +5,7 @@ import random
|
|
5 |
from transformers import ElectraTokenizerFast, TFElectraForQuestionAnswering
|
6 |
from datasets import Dataset, DatasetDict, load_dataset
|
7 |
|
8 |
-
model_hf = "nguyennghia0902/
|
9 |
tokenizer = ElectraTokenizerFast.from_pretrained(model_hf)
|
10 |
reload_model = TFElectraForQuestionAnswering.from_pretrained(model_hf)
|
11 |
|
@@ -31,33 +31,30 @@ def main():
|
|
31 |
|
32 |
new_data = load_dataset("nguyennghia0902/project02_textming_dataset", data_files={'train': 'raw_newformat_data/traindata-00000-of-00001.arrow', 'test': 'raw_newformat_data/testdata-00000-of-00001.arrow'})
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
sample = random.choice(new_data['test'])
|
39 |
-
sampleQ = sample['question']
|
40 |
-
sampleC = sample['context']
|
41 |
-
sampleA = sample['answers']["text"][0]
|
42 |
|
43 |
-
question = st.text_area(
|
44 |
-
"Sample QUESTION: ",
|
45 |
-
sampleQ,
|
46 |
-
height=15,
|
47 |
-
)
|
48 |
text = st.text_area(
|
49 |
"Sample CONTEXT:",
|
50 |
sampleC,
|
51 |
-
height=
|
52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
answer = st.text_area(
|
54 |
"True ANSWER:",
|
55 |
sampleA,
|
56 |
-
height=
|
57 |
)
|
58 |
|
59 |
# Create a prediction button
|
60 |
-
if st.button("Predict"):
|
61 |
prediction = ""
|
62 |
prediction = predict(question, text)
|
63 |
st.success(prediction)
|
|
|
5 |
from transformers import ElectraTokenizerFast, TFElectraForQuestionAnswering
|
6 |
from datasets import Dataset, DatasetDict, load_dataset
|
7 |
|
8 |
+
model_hf = "nguyennghia0902/electra-small-discriminator_0.0005_32"
|
9 |
tokenizer = ElectraTokenizerFast.from_pretrained(model_hf)
|
10 |
reload_model = TFElectraForQuestionAnswering.from_pretrained(model_hf)
|
11 |
|
|
|
31 |
|
32 |
new_data = load_dataset("nguyennghia0902/project02_textming_dataset", data_files={'train': 'raw_newformat_data/traindata-00000-of-00001.arrow', 'test': 'raw_newformat_data/testdata-00000-of-00001.arrow'})
|
33 |
|
34 |
+
sample = random.choice(new_data['test'])
|
35 |
+
sampleQ = sample['question']
|
36 |
+
sampleC = sample['context']
|
37 |
+
sampleA = sample['answers']["text"][0]
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
text = st.text_area(
|
40 |
"Sample CONTEXT:",
|
41 |
sampleC,
|
42 |
+
height=200,
|
43 |
)
|
44 |
+
question = st.text_area(
|
45 |
+
"Sample QUESTION: ",
|
46 |
+
sampleQ,
|
47 |
+
height=5,
|
48 |
+
)
|
49 |
+
|
50 |
answer = st.text_area(
|
51 |
"True ANSWER:",
|
52 |
sampleA,
|
53 |
+
height=5,
|
54 |
)
|
55 |
|
56 |
# Create a prediction button
|
57 |
+
if st.button("Sample & Predict"):
|
58 |
prediction = ""
|
59 |
prediction = predict(question, text)
|
60 |
st.success(prediction)
|