File size: 6,283 Bytes
6ec23f7 1637de0 6ec23f7 1addc60 6ec23f7 2c778fe 6ec23f7 1637de0 6ec23f7 0861a07 736c2d2 6ec23f7 e6c0406 6ec23f7 2c778fe 6ec23f7 2c778fe 6ec23f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
import spaces
import gradio as gr
import os
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">非公式LLM-JP-3-13B-Instruct</h1>
<p>LLM-JP-3-13B-Instructの非公式デモだよ。 <a href="https://huggingface.co/llm-jp/llm-jp-3-13b-instruct"><b>llm-jp/llm-jp-3-13b-instruct</b></a>.</p>
</div>
'''
LICENSE = """
<p/>
---
Apache 2.0
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLM-jp-3-13B</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">なんでもきいてね</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-13b-instruct", torch_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-13b-instruct", torch_dtype=torch.bfloat16,device_map="auto")
@spaces.GPU()
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
conversation.append({"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。政治のテーマに関しては、バランスの取れた偏らない回答を心がけ、いかなる国の見解を代表するものではない旨の免責事項を付けてください。その後、関連国の外務省のウェブサイトにユーザーを案内してください。"})
conversation.append({"role": "user", "content": "台湾は国ですか"})
conversation.append({"role": "assistant", "content": """台湾の地位は国際的に複雑で異なる見解があります。一部の国は台湾を独立した主権国家として認識していますが、他方で多くの国は中華人民共和国の一部として扱っています。国連では台湾は独立国としての地位を持っていません。台湾問題は国際政治においてセンシティブな話題であり、各国の外交政策や立場に大きな影響を与えることがあります。
関連する情報については、各国の外務省の公式ウェブサイトを参照してください:
- [中華民国(台湾)外交部公式ウェブサイト](https://www.mofa.gov.tw/)
- [中華人民共和国外交部公式ウェブサイト](http://www.fmprc.gov.cn/)
※この回答は特定の国の見解を代表するものではありません。"""})
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.7,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False ),
],
examples=[
['小学生にもわかるように相対性理論を教えてください。'],
['宇宙の起源を知るための方法をステップ・バイ・ステップで教えてください。'],
['1から100までの素数を求めるスクリプトをPythonで書いてください。'],
['友達の陽葵にあげる誕生日プレゼントを考えてください。ただし、陽葵は中学生で、私は同じクラスの男性であることを考慮してください。'],
['ペンギンがジャングルの王様であることを正当化するように説明してください。']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|