import time import torch import joblib import gradio as gr from datasets import load_dataset from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification dataset = load_dataset("nicholasKluge/instruct-aira-dataset", split='portuguese') df = dataset.to_pandas() df.columns = ['Prompt', 'Completion'] df['Cosine Similarity'] = None prompt_tfidf_vectorizer = joblib.load('prompt_vectorizer.pkl') prompt_tfidf_matrix = joblib.load('prompt_tfidf_matrix.pkl') completion_tfidf_vectorizer = joblib.load('completion_vectorizer.pkl') completion_tfidf_matrix = joblib.load('completion_tfidf_matrix.pkl') model_id = "nicholasKluge/Aira-2-portuguese-124M" rewardmodel_id = "nicholasKluge/RewardModelPT" toxicitymodel_id = "nicholasKluge/ToxicityModelPT" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained(model_id) rewardModel = AutoModelForSequenceClassification.from_pretrained(rewardmodel_id) toxicityModel = AutoModelForSequenceClassification.from_pretrained(toxicitymodel_id) model.eval() rewardModel.eval() toxicityModel.eval() model.to(device) rewardModel.to(device) toxicityModel.to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) rewardTokenizer = AutoTokenizer.from_pretrained(rewardmodel_id) toxiciyTokenizer = AutoTokenizer.from_pretrained(toxicitymodel_id) intro = """ ## O que é Aira? [Aira](https://huggingface.co/nicholasKluge/Aira-2-portuguese-124M) é uma série de chatbots de domínio aberto (português e inglês) obtidos por meio de ajuste fino supervisionado e DPO. Aira-2 é a segunda versão da série Aira. A série Aira foi desenvolvida para ajudar os pesquisadores a explorar os desafios relacionados ao problema de alinhamento. ## Limitações Desenvolvemos os nossos chatbots através de ajuste fino supervisionado e DPO. Esta abordagem tem muitas limitações. Apesar de podermos criar um chatbot capaz de responder a perguntas sobre qualquer assunto, é difícil forçar o modelo a produzir respostas de boa qualidade. E por boa, queremos dizer texto **factual** e **não tóxico**. Isto leva-nos a alguns problemas: **Alucinações:** Esse modelo pode produzir conteúdo que pode ser confundido com a verdade, mas que é, de fato, enganoso ou totalmente falso, ou seja, alucinação. **Vieses e toxicidade:** Esse modelo herda os estereótipos sociais e históricos dos dados usados para treiná-lo. Devido a esses vieses, o modelo pode produzir conteúdo tóxico, ou seja, nocivo, ofensivo ou prejudicial a indivíduos, grupos ou comunidades. **Repetição e verbosidade:** O modelo pode ficar preso em loops de repetição (especialmente se a penalidade de repetição durante as gerações for definida com um valor escasso) ou produzir respostas prolixas sem relação com o prompt que recebeu. ## Uso Intendido Aira destina-se apenas à investigação acadêmica. Para mais informações, leia nossa [carta modelo](https://huggingface.co/nicholasKluge/Aira-2-portuguese-124M). ## Como essa demo funciona? Para esta demonstração, utilizamos o modelo mais leve que treinamos (Aira-2-portuguese-124M). Esta demonstração utiliza um [modelo de recompensa](https://huggingface.co/nicholasKluge/RewardModelPT) e um [modelo de toxicidade](https://huggingface.co/nicholasKluge/ToxicityModelPT) para avaliar a pontuação de cada resposta candidata, considerando o seu alinhamento com a mensagem do utilizador e o seu nível de toxicidade. A função de geração organiza as respostas candidatas por ordem da sua pontuação de recompensa e elimina as respostas consideradas tóxicas ou nocivas. Posteriormente, a função de geração devolve a resposta candidata com a pontuação mais elevada que ultrapassa o limiar de segurança, ou uma mensagem pré-estabelecida se não forem identificados candidatos seguros. """ search_intro ="""

Explore o conjunto de dados de alinhamento 🔍

Aqui, os usuários podem procurar instâncias no conjunto de dados de ajuste fino. Para permitir uma pesquisa rápida, usamos a representação Term Frequency-Inverse Document Frequency (TF-IDF) e a similaridade de cosseno para explorar o conjunto de dados. Os vetorizadores TF-IDF pré-treinados e as matrizes TF-IDF correspondentes estão disponíveis neste repositório. Abaixo, apresentamos as dez instâncias mais semelhantes no conjunto de dados de ajuste fino utilizado. Os usuários podem usar essa ferramenta para explorar como o modelo interpola os dados de ajuste fino e se ele é capaz de seguir instruções que estão fora da distribuição de ajuste fino. """ disclaimer = """ **Isenção de responsabilidade:** Esta demonstração deve ser utilizada apenas para fins de investigação. Os moderadores não censuram a saída do modelo, e os autores não endossam as opiniões geradas por este modelo. Se desejar apresentar uma reclamação sobre qualquer mensagem produzida pelo modelo, por favor contatar [nicholas@airespucrs.org](mailto:nicholas@airespucrs.org). """ with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo: gr.Markdown("""

Aira Demo (Português) 🤓💬

""") gr.Markdown(intro) chatbot = gr.Chatbot(label="Aira", height=500, show_copy_button=True, avatar_images=("./astronaut.png", "./robot.png"), render_markdown= True, line_breaks=True, likeable=False, layout='panel') msg = gr.Textbox(label="Escreva uma pergunta ou instrução para Aira ...", placeholder="Olá Aira, como vai você?") # Parameters to control the generation with gr.Accordion(label="Parâmetros ⚙️", open=False): safety = gr.Radio(["On", "Off"], label="Proteção 🛡️", value="On", info="Ajuda a prevenir o modelo de gerar conteúdo tóxico.") top_k = gr.Slider(minimum=10, maximum=100, value=30, step=5, interactive=True, label="Top-k", info="Controla o número de tokens de maior probabilidade a considerar em cada passo.") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.30, step=0.05, interactive=True, label="Top-p", info="Controla a probabilidade cumulativa dos tokens gerados.") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperatura", info="Controla a aleatoriedade dos tokens gerados.") repetition_penalty = gr.Slider(minimum=1, maximum=2, value=1.1, step=0.1, interactive=True, label="Penalidade de Repetição", info="Valores mais altos auxiliam o modelo a evitar repetições na geração de texto.") max_new_tokens = gr.Slider(minimum=10, maximum=500, value=200, step=10, interactive=True, label="Comprimento Máximo", info="Controla o número máximo de tokens a serem produzidos (ignorando o prompt).") smaple_from = gr.Slider(minimum=2, maximum=10, value=2, step=1, interactive=True, label="Amostragem por Rejeição", info="Controla o número de gerações a partir das quais o modelo de recompensa irá selecionar.") clear = gr.Button("Limpar Conversa 🧹") gr.Markdown(search_intro) search_input = gr.Textbox(label="Cole aqui o prompt ou a conclusão que você gostaria de pesquisar...", placeholder="Qual a Capital do Brasil?") search_field = gr.Radio(['Prompt', 'Completion'], label="Coluna do Dataset", value='Prompt') submit = gr.Button(value="Buscar") with gr.Row(): out_dataframe = gr.Dataframe( headers=df.columns.tolist(), datatype=["str", "str", "str"], row_count=10, col_count=(3, "fixed"), wrap=True, interactive=False ) gr.Markdown(disclaimer) def user(user_message, chat_history): """ Chatbot's user message handler. """ return gr.update(value=user_message, interactive=True), chat_history + [[user_message, None]] def generate_response(user_msg, top_p, temperature, top_k, max_new_tokens, smaple_from, repetition_penalty, safety, chat_history): """ Chatbot's response generator. """ inputs = tokenizer(tokenizer.bos_token + user_msg + tokenizer.sep_token, add_special_tokens=False, return_tensors="pt").to(model.device) generated_response = model.generate(**inputs, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, repetition_penalty=repetition_penalty, do_sample=True, early_stopping=True, renormalize_logits=True, length_penalty=0.3, top_k=top_k, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, num_return_sequences=smaple_from) decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response] rewards = list() if safety == "On": toxicities = list() for text in decoded_text: reward_tokens = rewardTokenizer(user_msg, text, truncation=True, max_length=512, return_token_type_ids=False, return_tensors="pt", return_attention_mask=True) reward_tokens.to(rewardModel.device) reward = rewardModel(**reward_tokens)[0].item() rewards.append(reward) if safety == "On": toxicity_tokens = toxiciyTokenizer(user_msg + " " + text, truncation=True, max_length=512, return_token_type_ids=False, return_tensors="pt", return_attention_mask=True) toxicity_tokens.to(toxicityModel.device) toxicity = toxicityModel(**toxicity_tokens)[0].item() toxicities.append(toxicity) toxicity_threshold = 5 if safety == "On": ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True) ordered_generations = [(x, y, z) for (x, y, z) in ordered_generations if z >= toxicity_threshold] else: ordered_generations = sorted(zip(decoded_text, rewards), key=lambda x: x[1], reverse=True) if len(ordered_generations) == 0: bot_message = """Peço desculpa pelo incómodo, mas parece que não foi possível identificar respostas adequadas que cumpram as nossas normas de segurança. Infelizmente, isto indica que o conteúdo gerado pode conter elementos de toxicidade ou pode não ajudar a responder à sua mensagem. A sua opinião é valiosa para nós e esforçamo-nos por garantir uma conversa segura e construtiva. Não hesite em fornecer mais pormenores ou colocar quaisquer outras questões, e farei o meu melhor para o ajudar.""" else: bot_message = ordered_generations[0][0] chat_history[-1][1] = "" for character in bot_message: chat_history[-1][1] += character time.sleep(0.005) yield chat_history def search_in_datset(column_name, search_string): """ Search in the dataset for the most similar instances. """ temp_df = df.copy() if column_name == 'Prompt': search_vector = prompt_tfidf_vectorizer.transform([search_string]) cosine_similarities = cosine_similarity(prompt_tfidf_matrix, search_vector) temp_df['Cosine Similarity'] = cosine_similarities temp_df.sort_values('Cosine Similarity', ascending=False, inplace=True) return temp_df.head(10) elif column_name == 'Completion': search_vector = completion_tfidf_vectorizer.transform([search_string]) cosine_similarities = cosine_similarity(completion_tfidf_matrix, search_vector) temp_df['Cosine Similarity'] = cosine_similarities temp_df.sort_values('Cosine Similarity', ascending=False, inplace=True) return temp_df.head(10) response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( generate_response, [msg, top_p, temperature, top_k, max_new_tokens, smaple_from, repetition_penalty, safety, chatbot], chatbot ) response.then(lambda: gr.update(interactive=True), None, [msg], queue=False) msg.submit(lambda x: gr.update(value=''), None,[msg]) clear.click(lambda: None, None, chatbot, queue=False) submit.click(fn=search_in_datset, inputs=[search_field, search_input], outputs=out_dataframe) demo.queue() demo.launch()