File size: 2,009 Bytes
bade1d0
 
 
2703586
bade1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703586
12a5839
45848d1
bade1d0
12a5839
 
 
 
 
bade1d0
 
 
 
30b460c
 
bade1d0
 
 
 
 
c211276
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import re
import gradio
import torch
import pandas as pd

from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel

processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")

device = "cuda" if torch.cuda.is_available() else "cpu"

model.to(device)

def process_document(image):

    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values
    
    # prepare decoder inputs
    task_prompt = "<s_cord-v2>"
    decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )
    
    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token

    # js = processor.token2json(sequence)
    
    return {
        'text_requirements': 'all_pass',
        'symbol_requirements': 'all_pass',
        'language_requirements': 'all_pass'
    }

demo = gradio.Interface(
    fn=process_document,
    inputs="image",
    outputs="json",
    title="Donut Text Parsing",
    description=None,
    article=None,
    examples=None,
    cache_examples=False)

demo.launch(enable_queue=True)