Spaces:
Runtime error
Runtime error
File size: 5,253 Bytes
a561d8f b116e78 a561d8f f7fcf35 a561d8f ff93443 a561d8f fd159d4 a561d8f fb4246b a561d8f ff93443 a8aa8cb a561d8f ff93443 a561d8f a8aa8cb a561d8f 5ff4a6c a561d8f a8aa8cb a561d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import io
import gradio as gr
import requests, validators
import torch
import pathlib
from PIL import Image
import datasets
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import os
import IPython
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = ['angular_leaf_spot', 'bean_rust', 'healthy']
def classify(im):
'''FUnction for classifying plant health status'''
features = feature_extractor(im, return_tensors='pt')
with torch.no_grad():
logits = model(**features).logits
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
def get_original_image(url_input):
'''Get image from URL'''
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
return image
def detect_plant_health(url_input,image_input,webcam_input):
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
elif image_input:
image = image_input
elif webcam_input:
image = webcam_input
#Make prediction
label_probs = classify(image)
return label_probs
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
title = """<h1 id="title">Plant Health Classification with ViT</h1>"""
description = """
This Plant Health classifier app was built to detect the health of plants using images of leaves by fine-tuning a Vision Transformer (ViT) [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the [Beans](https://huggingface.co/datasets/beans) dataset.
The finetuned model has an accuracy of 98.4% on the test (unseen) dataset and 100% on the validation dataset.
How to use the app:
- Upload an image via 3 options, uploading the image from local device, using a URL (image from the web) or a webcam
- The app will take a few seconds to generate a prediction with the following labels:
- *angular_leaf_spot*
- *bean_rust*
- *healthy*
- Feel free to click the image examples as well.
"""
urls = ["https://www.healthbenefitstimes.com/green-beans/","https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg", "https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg"]
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.p*g'))]
twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.HTML('<center><img src="images/Healthy.png" width=250px height=250px></center>')
gr.Markdown(description)
gr.Markdown(twitter_link)
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
with gr.Column():
img_input = gr.Image(type='pil',shape=(450,450))
label_from_upload= gr.Label(num_top_classes=3)
with gr.Row():
example_images = gr.Examples(examples=images,inputs=[img_input])
img_but = gr.Button('Classify')
with gr.TabItem('Image URL'):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
original_image = gr.Image(shape=(450,450))
url_input.change(get_original_image, url_input, original_image)
with gr.Column():
label_from_url = gr.Label(num_top_classes=3)
with gr.Row():
example_url = gr.Examples(examples=urls,inputs=[url_input])
url_but = gr.Button('Classify')
with gr.TabItem('WebCam'):
with gr.Row():
with gr.Column():
web_input = gr.Image(source='webcam',type='pil',shape=(450,450),streaming=True)
with gr.Column():
label_from_webcam= gr.Label(num_top_classes=3)
cam_but = gr.Button('Classify')
url_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_url],queue=True)
img_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_upload],queue=True)
cam_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_webcam],queue=True)
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-plant-health)")
demo.launch(debug=True,enable_queue=True) |