ember_chat / app.py
nicpopovic's picture
Update app.py
476e054 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
from bs4 import BeautifulSoup
def clean_html(html_content):
# Parse the HTML
soup = BeautifulSoup(html_content, 'html.parser')
# Remove all elements with class 'small-text'
for element in soup.find_all(class_='small-text'):
element.decompose() # Removes the element from the tree
# Get the plain text, stripping any remaining HTML tags
cleaned_text = soup.get_text()
return cleaned_text.strip().replace(" ", " ").replace("( ", "(").replace(" )", ")")
# Reusing the original MLP class and other functions (unchanged) except those specific to Streamlit
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, output_dim)
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
value = np.clip(value, 0.0, 1.0)
colormap = plt.get_cmap(colormap_name)
rgba_color = colormap(value)
css_color = to_hex(rgba_color)
return css_color + "88"
# Caching functions for model and classifier
model_cache = {}
def get_model_and_tokenizer(name):
if name not in model_cache:
tok = AutoTokenizer.from_pretrained(name, token=os.getenv('HF_TOKEN'))
model = AutoModelForCausalLM.from_pretrained(name, token=os.getenv('HF_TOKEN'), torch_dtype="bfloat16")
#model = AutoModelForCausalLM.from_pretrained(name, token=, load_in_4bit=True)
model_cache[name] = (model, tok)
return model_cache[name]
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device, weights_only=True))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device, weights_only=True))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def find_datasets_and_model_ids(root_dir):
datasets = {}
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += "<b><u>"
html_content += "".join(tokenized_text[span_start:span_end])
html_content += "</u></b> "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer, new_tags):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append("Ġ")
span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
def gen_json(input_text, max_new_tokens):
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
inputs = tok([f" {input_text}"], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=1.2, do_sample=False
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = f"{css}<br>"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
#output += "<h5>Show tokenwise classification</h5>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$").replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
#if removed_spans != "":
# output += f"<br><br><i>({removed_spans})</i>"
list_of_spans = [{"name": tok.convert_tokens_to_string(new_text[2][x[0]:x[1]]).strip(), "type": new_tags[tags[x[1]-1]]} for x in filter_spans(spans)[0] if new_tags[tags[x[1]-1]] != "O"]
out_dict = {"text": output_text.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "".strip()), "entites": list_of_spans}
yield out_dict
return
# Creating the Gradio Interface
def generate_text(input_text, messages=None):
if input_text == "":
yield "Please enter some text first."
return
token_limit=250
#print([clean_html(x["content"]) for x in messages])
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
if messages is None:
messages = []
else:
messages = []
system="""You are a knowledge assistant. Keep your responses very short."""
messages = [{"role": "system", "content": system}]+ [{"role": x["role"], "content": clean_html(x["content"])} for x in messages] +[{"role": "user", "content": input_text}]
input_text = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tok([input_text], return_tensors="pt").to(model.device)
if len(inputs.input_ids[0]) > 80:
yield [{"role": "assistant", "content": "Your message is too long for this demo, sorry :("}]
return
#inputs = tok([f" {input_text[:200]}"], return_tensors="pt").to(model.device)
#inputs = tok([input_text[:200]], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=token_limit-len(inputs.input_ids[0]),
repetition_penalty=1.2, do_sample=False
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = generated_text_spanwise
#output += "<h5>Show tokenwise classification</h5>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$").replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
#if removed_spans != "":
# output += f"<br><br><i>({removed_spans})</i>"
list_of_spans = [{"name": tok.convert_tokens_to_string(new_text[2][x[0]:x[1]]).strip(), "type": new_tags[tags[x[1]-1]]} for x in filter_spans(spans)[0] if new_tags[tags[x[1]-1]] != "O"]
out_dict = {"text": output_text.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "").strip(), "entites": list_of_spans}
if output.endswith("<|end_header_id|>\n\n"):
continue
html_out = output.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "").strip().split("<|end_header_id|>")[-1].replace("**", "")
yield [messages[-1]] + [{"role": "assistant", "content": html_out}]
return
# Load datasets and models for the Gradio app
datasets = find_datasets_and_model_ids("data/")
available_models = list(datasets.keys())
available_datasets = {model: list(datasets[model].keys()) for model in available_models}
available_configs = {model: {dataset: list(datasets[model][dataset].keys()) for dataset in available_datasets[model]} for model in available_models}
def update_datasets(model_name):
return available_datasets[model_name]
def update_configs(model_name, dataset_name):
return available_configs[model_name][dataset_name]
model_id = "meta-llama/Llama-3.2-1B-Instruct"
data_id = "STOKE_500_wikiqa"
config_id = "default"
#model_id = "gpt2"
#data_id = "1_NER"
#config_id = "default"
model, tok = get_model_and_tokenizer(model_id)
if torch.cuda.is_available():
model.cuda()
# Load model classifiers
try:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model.config.n_head * model.config.n_layer, model.config.n_embd, model.device,
datasets[model_id][data_id][config_id]
)
except:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model.config.num_attention_heads * model.config.num_hidden_layers, model.config.hidden_size, model.device,
datasets[model_id][data_id][config_id]
)
css = """
<style>
.prose {
line-height: 200%;
}
.highlight {
display: inline;
}
.highlight::after {
background-color: var(data-color);
}
.spanhighlight {
padding: 2px 5px;
border-radius: 5px;
}
.tooltip {
position: relative;
display: inline-block;
}
.tooltip::after {
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
display: none;
position: absolute;
background-color: #333;
color: #fff;
padding: 5px;
border-radius: 5px;
bottom: 100%; /* Position it above the element */
left: 50%;
transform: translateX(-50%);
width: auto;
min-width: 120px;
margin: 0 auto;
text-align: center;
}
.tooltip:hover::after {
display: block; /* Show the tooltip on hover */
}
.small-text {
padding: 2px 5px;
background-color: white;
border-radius: 5px;
font-size: xx-small;
margin-left: 0.5em;
vertical-align: 0.2em;
font-weight: bold;
color: grey!important;
}
footer {
display:none !important
}
.gradio-container {
padding: 0!important;
height:400px;
}
</style>"""
example_messages=[{'role': 'user', 'content': 'What can you tell me about the Beatles?'}, {'role': 'assistant', 'content': """<span class='highlight spanhighlight' data-tooltip-text='ORG' style='background-color: #756bb188'>The Beatles<span class='small-text'>ORG</span></span> were a <span class='highlight spanhighlight' data-tooltip-text='NORP' style='background-color: #a1d99b88'> British<span class='small-text'>NORP</span></span> rock band formed in <span class='highlight spanhighlight' data-tooltip-text='GPE' style='background-color: #e6550d88'> Liverpool<span class='small-text'>GPE</span></span>, <span class='highlight spanhighlight' data-tooltip-text='GPE' style='background-color: #e6550d88'> England<span class='small-text'>GPE</span></span> in <span class='highlight spanhighlight' data-tooltip-text='DATE' style='background-color: #6baed688'>1960<span class='small-text'>DATE</span></span>. They're widely considered one of the most influential and successful bands in the history of popular music.
Some key facts:
- Formed by <span class='highlight spanhighlight' data-tooltip-text='PERSON' style='background-color: #bcbddc88'> John Lennon<span class='small-text'>PERSON</span></span> (guitar), <span class='highlight spanhighlight' data-tooltip-text='PERSON' style='background-color: #bcbddc88'> Paul McCartney<span class='small-text'>PERSON</span></span> (bass guitar, vocals), <span class='highlight spanhighlight' data-tooltip-text='PERSON' style='background-color: #bcbddc88'> George Harrison<span class='small-text'>PERSON</span></span> (lead guitar, vocals) and <span class='highlight spanhighlight' data-tooltip-text='PERSON' style='background-color: #bcbddc88'> Ringo Starr<span class='small-text'>PERSON</span></span> (drums)
- Released iconic albums like <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'> "Sgt. Pepper's Lonely Hearts Club Band<span class='small-text'>WORK_OF_ART</span></span>," " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>Revolver<span class='small-text'>WORK_OF_ART</span></span>" and " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>Abbey Road<span class='small-text'>WORK_OF_ART</span></span>"
- Known for hits like " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>I Want to Hold Your Hand<span class='small-text'>WORK_OF_ART</span></span>," " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>Yesterday<span class='small-text'>WORK_OF_ART</span></span>," " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>Hey Jude<span class='small-text'>WORK_OF_ART</span></span>," and " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>Let It Be<span class='small-text'>WORK_OF_ART</span></span>"
They broke numerous records throughout their career, including being the <span class='highlight spanhighlight' data-tooltip-text='ORDINAL' style='background-color: #c7e9c088'> first<span class='small-text'>ORDINAL</span></span> band to have <span class='highlight spanhighlight' data-tooltip-text='CARDINAL' style='background-color: #3182bd88'> five<span class='small-text'>CARDINAL</span></span> <span class='highlight spanhighlight' data-tooltip-text='CARDINAL' style='background-color: #3182bd88'> number-one<span class='small-text'>CARDINAL</span></span> singles on the <span class='highlight spanhighlight' data-tooltip-text='ORG' style='background-color: #756bb188'> Billboard<span class='small-text'>ORG</span></span> Hot 100 chart at once (" <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>In My Life<span class='small-text'>WORK_OF_ART</span></span>," <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'> "Can't Buy Me Love<span class='small-text'>WORK_OF_ART</span></span>," " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>A Hard Day's Night<span class='small-text'>WORK_OF_ART</span></span>," " <span class='highlight spanhighlight' data-tooltip-text='WORK_OF_ART' style='background-color: #bdbdbd88'>She Loves You<span class='small-text'>WORK_OF_ART</span></span>")"""}]
with gr.Blocks(css=css, fill_width=True) as demo:
chatbot = gr.Chatbot(type="messages", value=example_messages)
msg = gr.Textbox(submit_btn=True)
msg.submit(lambda: None, None, chatbot).then(generate_text, msg, chatbot, queue="queue")
# Add an examples section for users to pick from predefined messages
examples = gr.Examples(examples=["What can you tell me about the Beatles?", "Whats the GDP of Norway?", "List some fun things to do in Miami", "What do you know about the KIT in Karlsruhe?"], inputs=msg, run_on_click=True, fn=generate_text, outputs=chatbot, cache_examples=False)
demo.launch(ssr_mode=False)