First commit
Browse files- app.py +71 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install gradio --upgrade')
|
3 |
+
os.system('pip install git+https://github.com/NielsRogge/transformers.git@add_dino --upgrade')
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import ViTFeatureExtractor, ViTModel
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torchvision
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
def get_attention_maps(pixel_values, attentions, nh):
|
13 |
+
threshold = 0.6
|
14 |
+
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
15 |
+
h_featmap = pixel_values.shape[-1] // model.config.patch_size
|
16 |
+
|
17 |
+
# we keep only a certain percentage of the mass
|
18 |
+
val, idx = torch.sort(attentions)
|
19 |
+
val /= torch.sum(val, dim=1, keepdim=True)
|
20 |
+
cumval = torch.cumsum(val, dim=1)
|
21 |
+
th_attn = cumval > (1 - threshold)
|
22 |
+
idx2 = torch.argsort(idx)
|
23 |
+
for head in range(nh):
|
24 |
+
th_attn[head] = th_attn[head][idx2[head]]
|
25 |
+
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
|
26 |
+
# interpolate
|
27 |
+
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu().numpy()
|
28 |
+
|
29 |
+
attentions = attentions.reshape(nh, w_featmap, h_featmap)
|
30 |
+
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu()
|
31 |
+
attentions = attentions.detach().numpy()
|
32 |
+
|
33 |
+
# save attentions heatmaps and return list of filenames
|
34 |
+
output_dir = '.'
|
35 |
+
os.makedirs(output_dir, exist_ok=True)
|
36 |
+
attention_maps = []
|
37 |
+
print("Number of heads:", nh)
|
38 |
+
for j in range(nh):
|
39 |
+
fname = os.path.join(output_dir, "attn-head" + str(j) + ".png")
|
40 |
+
# save the attention map
|
41 |
+
plt.imsave(fname=fname, arr=attentions[j], format='png')
|
42 |
+
# append file name
|
43 |
+
attention_maps.append(fname)
|
44 |
+
|
45 |
+
return attention_maps
|
46 |
+
|
47 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", do_resize=False)
|
48 |
+
model = ViTModel.from_pretrained("facebook/dino-vits8", add_pooling_layer=False)
|
49 |
+
|
50 |
+
def visualize_attention(image):
|
51 |
+
# normalize channels
|
52 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
53 |
+
|
54 |
+
# forward pass
|
55 |
+
outputs = model(pixel_values, output_attentions=True, interpolate_pos_encoding=True)
|
56 |
+
|
57 |
+
# get attentions of last layer
|
58 |
+
attentions = outputs.attentions[-1]
|
59 |
+
nh = attentions.shape[1] # number of heads
|
60 |
+
|
61 |
+
# we keep only the output patch attention
|
62 |
+
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
|
63 |
+
|
64 |
+
attention_maps = get_attention_maps(pixel_values, attentions, nh)
|
65 |
+
|
66 |
+
return attention_maps
|
67 |
+
|
68 |
+
iface = gr.Interface(fn=visualize_attention,
|
69 |
+
inputs=gr.inputs.Image(shape=(480, 480), type="pil"),
|
70 |
+
outputs=[gr.outputs.Image(type='file', label=f'attention_head_{i}') for i in range(6)])
|
71 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
Pillow
|
4 |
+
matplotlib
|