Add example image
Browse files
app.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
|
|
|
|
|
|
|
3 |
|
4 |
feature_extractor = PerceiverFeatureExtractor()
|
5 |
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
|
@@ -25,5 +28,6 @@ def classify_image(image):
|
|
25 |
|
26 |
image = gr.inputs.Image(type="pil")
|
27 |
label = gr.outputs.Label(num_top_classes=5)
|
|
|
28 |
|
29 |
-
gr.Interface(fn=classify_image, inputs=image, outputs=label, enable_queue=True).launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
|
3 |
+
import torch
|
4 |
+
|
5 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
6 |
|
7 |
feature_extractor = PerceiverFeatureExtractor()
|
8 |
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
|
|
|
28 |
|
29 |
image = gr.inputs.Image(type="pil")
|
30 |
label = gr.outputs.Label(num_top_classes=5)
|
31 |
+
examples = [["cats.jpg"]]
|
32 |
|
33 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, enable_queue=True).launch(debug=True)
|