import gradio as gr from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor import torch torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') torch.hub.download_url_to_file('https://storage.googleapis.com/perceiver_io/dalmation.jpg', 'dog.jpg') feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv") model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor) def classify_image(image): results = image_pipe(image) # convert to format Gradio expects output = {} for prediction in results: predicted_label = prediction['label'] score = prediction['score'] output[predicted_label] = score return output image = gr.inputs.Image(type="pil") label = gr.outputs.Label(num_top_classes=5) examples = [["cats.jpg"], ["dog.jpg"]] gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, enable_queue=True).launch(debug=True)