from share_btn import community_icon_html, loading_icon_html, share_js import os, subprocess import torch def setup(): install_cmds = [ ['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'], ['pip', 'install', 'open_clip_torch'], ['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'], ['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git'] ] for cmd in install_cmds: print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8')) setup() # download cache files print("Download preprocessed cache files...") CACHE_URLS = [ 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl', ] os.makedirs('cache', exist_ok=True) for url in CACHE_URLS: print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')) import sys sys.path.append('src/blip') sys.path.append('clip-interrogator') import gradio as gr from clip_interrogator import Config, Interrogator config = Config() config.device = 'cuda' if torch.cuda.is_available() else 'cpu' config.blip_offload = False if torch.cuda.is_available() else True config.chunk_size = 2048 config.flavor_intermediate_count = 512 config.blip_num_beams = 64 ci = Interrogator(config) def inference(image, mode, best_max_flavors): image = image.to(config.device) image = image.convert('RGB') if mode == 'best': prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) print("mode best: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) elif mode == 'classic': prompt_result = ci.interrogate_classic(image) print("mode classic: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) else: prompt_result = ci.interrogate_fast(image) print("mode fast: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) title = """
Do you want to figure out 'what a good prompt might be' to create new images similar from an existing one?
The CLIP Interrogator is here to get you answered!
This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model!
Server busy? You can also run on Google Colab
Has this been helpful to you? Follow pharmapsychotic website for more tools like this at his AI generative art tools list