Spaces:
Running
Running
File size: 11,385 Bytes
2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 0663fac 49ea899 0663fac 49ea899 2278277 49ea899 2278277 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 49ea899 2278277 49ea899 0663fac 2278277 49ea899 2278277 49ea899 0663fac b9f4d50 0663fac 2278277 0663fac 49ea899 2278277 49ea899 0663fac 49ea899 0663fac 49ea899 0663fac 2278277 49ea899 2278277 49ea899 0663fac 49ea899 2278277 49ea899 0663fac 49ea899 2278277 49ea899 2278277 49ea899 2278277 49ea899 2278277 0663fac 49ea899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import io
import random
from io import BytesIO
from typing import List, Tuple
import aiohttp
import panel as pn
import torch
from bokeh.themes import Theme
# import torchvision.transforms.functional as TVF
import torch.nn.functional as F
from PIL import Image
from transformers import AutoImageProcessor, ResNetForImageClassification
from transformers.image_transforms import to_pil_image
DEVICE = "cpu"
pn.extension("mathjax", design="bootstrap", sizing_mode="stretch_width")
@pn.cache
def load_processor_model(
processor_name: str, model_name: str
) -> Tuple[AutoImageProcessor, ResNetForImageClassification]:
processor = AutoImageProcessor.from_pretrained(processor_name)
model = ResNetForImageClassification.from_pretrained(model_name)
return processor, model
def denormalize(image, mean, std):
mean = torch.tensor(mean).view(1, -1, 1, 1) # Reshape for broadcasting
std = torch.tensor(std).view(1, -1, 1, 1)
return image * std + mean
# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
# Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()
# Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon * sign_data_grad
# Adding clipping to maintain [0,1] range
perturbed_image = torch.clamp(perturbed_image, 0, 1)
# Return the perturbed image
return perturbed_image.detach()
def run_forward_backward(image: Image, epsilon):
processor, model = load_processor_model(
"microsoft/resnet-18", "microsoft/resnet-18"
)
# Grab input
processor.crop_pct = 1
input_tensor = processor(image, return_tensors="pt")["pixel_values"]
input_tensor.requires_grad_(True)
# Run inference
output = model(input_tensor)
output = output.logits
# Top target
top_pred = output.max(1, keepdim=False)[1]
# Get NLL loss and backward
loss = F.cross_entropy(output, top_pred)
model.zero_grad()
loss.backward()
# Denormalize input
mean = torch.tensor(processor.image_mean).view(1, -1, 1, 1)
std = torch.tensor(processor.image_std).view(1, -1, 1, 1)
input_tensor_denorm = input_tensor.clone().detach() * std + mean
# Add noise to input
random_noise = torch.sign(torch.randn_like(input_tensor)) * 0.02
input_tensor_denorm_noised = torch.clamp(input_tensor_denorm + random_noise, 0, 1)
# input_tensor_denorm_noised = input_tensor_denorm
# FGSM attack
adv_input_tensor_denorm = fgsm_attack(
image=input_tensor_denorm_noised,
epsilon=epsilon,
data_grad=input_tensor.grad.data,
)
# Normalize adversarial input tensor back to the input range
adv_input_tensor = (adv_input_tensor_denorm - mean) / std
# Inference on adversarial image
adv_output = model(adv_input_tensor)
adv_output = adv_output.logits
return (
output,
adv_output,
input_tensor_denorm.squeeze(),
adv_input_tensor_denorm.squeeze(),
)
async def process_inputs(button_event, image_data: bytes, epsilon: float):
"""
High level function that takes in the user inputs and returns the
classification results as panel objects.
"""
try:
main.disabled = True
# if not button_event or (button_event and not isinstance(image_data, bytes)):
if not isinstance(image_data, bytes):
yield "##### π Upload an image to proceed"
return
yield "##### β Fetching image and running model..."
try:
# Open the image using PIL
pil_img = Image.open(BytesIO(image_data))
# Run forward + FGSM
clean_logits, adv_logits, input_tensor, adv_input_tensor = (
run_forward_backward(image=pil_img, epsilon=epsilon)
)
except Exception as e:
yield f"##### Something went wrong, please try a different image! \n {e}"
return
img = pn.pane.Image(
to_pil_image(input_tensor, do_rescale=True),
height=300,
align="center",
)
# Convert image for visualizing
adv_img_pil = to_pil_image(adv_input_tensor, do_rescale=True)
adv_img = pn.pane.Image(
adv_img_pil,
height=300,
align="center",
)
# Download image button
adv_img_bytes = io.BytesIO()
adv_img_pil.save(adv_img_bytes, format="PNG")
# download = pn.widgets.FileDownload(
# to_pil_image(adv_img_bytes, do_rescale=True),
# embed=True,
# filename="adv_img.png",
# button_type="primary",
# button_style="outline",
# width_policy="min",
# )
# Build the results column
k_val = 5
results = pn.Column(
pn.Row("###### Uploaded", "###### Adversarial"),
pn.Row(img, adv_img),
# pn.Row(pn.Spacer(), download),
f" ###### Top {k_val} class predictions",
)
# Get likelihoods
likelihoods = [
F.softmax(clean_logits, dim=1).squeeze(),
F.softmax(adv_logits, dim=1).squeeze(),
]
label_bars_rows = pn.Row()
for likelihood_tensor in likelihoods:
# Get top k values and indices
vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
label_bars = pn.Column()
for idx, val in zip(idx_topk_clean, vals_topk_clean):
prob = val.item()
row_label = pn.widgets.StaticText(
name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
)
row_bar = pn.indicators.Progress(
value=int(prob * 100),
sizing_mode="stretch_width",
bar_color="success"
if prob > 0.7
else "warning", # Dynamic color based on value
margin=(0, 10),
design=pn.theme.Material,
)
label_bars.append(pn.Column(row_label, row_bar))
# for likelihood_tensor in likelihoods:
# # Get top
# vals_topk_clean, idx_topk_clean = torch.topk(likelihood_tensor, k=k_val)
# label_bars = pn.Column()
# for idx, val in zip(idx_topk_clean, vals_topk_clean):
# prob = val.item()
# row_label = pn.widgets.StaticText(
# name=f"{classes[idx]}", value=f"{prob:.2%}", align="center"
# )
# row_bar = pn.indicators.Progress(
# value=int(prob * 100),
# sizing_mode="stretch_width",
# bar_color="secondary",
# margin=(0, 10),
# design=pn.theme.Material,
# )
# label_bars.append(pn.Column(row_label, row_bar))
label_bars_rows.append(label_bars)
results.append(label_bars_rows)
yield results
except Exception as e:
yield f"##### Something went wrong! \n {e}"
return
finally:
main.disabled = False
####################################################################################################################################
# Get classes
classes = []
with open("classes.txt", "r") as file:
classes = file.read()
classes = classes.split("\n")
# Create widgets
############################################
# Fil upload widget
file_input = pn.widgets.FileInput(name="Upload a PNG image", accept=".png,.jpg")
# Epsilon
epsilon_slider = pn.widgets.FloatSlider(
name=r"$$\epsilon$$ parameter for FGSM",
start=0,
end=0.1,
step=0.005,
value=0.005,
format="1[.]000",
align="center",
max_width=500,
width_policy="max",
)
# alpha_slider = pn.widgets.FloatSlider(
# name=r"$$\alpha$$ parameter for Gaussian noise",
# start=0,
# end=0.1,
# step=0.005,
# value=0.000,
# format="1[.]000",
# align="center",
# max_width=500,
# width_policy="max"
# )
# Regenerate button
regenerate = pn.widgets.Button(
name="Regenerate",
button_type="primary",
width_policy="min",
max_width=105,
)
############################################
# Organize widgets in a column
input_widgets = pn.Column(
"""
###### Classify an image (png/jpeg) with a pre-trained [ResNet18](https://huggingface.co/microsoft/resnet-18) and generate an adversarial example.\n
Wondering where the class names come from? Find the list of ImageNet-1K classes [here.](https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/)
*Please be patient with the application, it is running on a low-resource device.*
""",
file_input,
pn.Row(epsilon_slider, pn.Spacer(width_policy="min", max_width=25), regenerate),
)
# Add interactivity
interactive_result = pn.panel(
pn.bind(
process_inputs,
regenerate,
file_input.param.value,
epsilon_slider.param.value,
),
height=600,
)
footer = pn.pane.Markdown(
"""
<br><br>
If the application is too slow for you, head over to the README to get this running locally.
"""
)
# Create dashboard
main = pn.WidgetBox(
input_widgets,
interactive_result,
footer,
)
title = "Adversarial Sample Generation"
pn.template.BootstrapTemplate(
title=title,
main=main,
main_max_width="min(75%, 698px)",
header_background="#101820",
).servable(title=title)
# Functions from original demo
# ICON_URLS = {
# "brand-github": "https://github.com/holoviz/panel",
# "brand-twitter": "https://twitter.com/Panel_Org",
# "brand-linkedin": "https://www.linkedin.com/company/panel-org",
# "message-circle": "https://discourse.holoviz.org/",
# "brand-discord": "https://discord.gg/AXRHnJU6sP",
# }
# async def random_url(_):
# pet = random.choice(["cat", "dog"])
# api_url = f"https://api.the{pet}api.com/v1/images/search"
# async with aiohttp.ClientSession() as session:
# async with session.get(api_url) as resp:
# return (await resp.json())[0]["url"]
# @pn.cache
# def load_processor_model(
# processor_name: str, model_name: str
# ) -> Tuple[CLIPProcessor, CLIPModel]:
# processor = CLIPProcessor.from_pretrained(processor_name)
# model = CLIPModel.from_pretrained(model_name)
# return processor, model
# async def open_image_url(image_url: str) -> Image:
# async with aiohttp.ClientSession() as session:
# async with session.get(image_url) as resp:
# return Image.open(io.BytesIO(await resp.read()))
# def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
# processor, model = load_processor_model(
# "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
# )
# inputs = processor(
# text=class_items,
# images=[image],
# return_tensors="pt", # pytorch tensors
# )
# print(inputs)
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image
# class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
# return class_likelihoods[0]
|