nisten's picture
Update app.py
3d92619 verified
raw
history blame
3.26 kB
import gradio as gr
import spaces
from transformers import OlmoeForCausalLM, AutoTokenizer
import torch
import subprocess
import sys
# Force upgrade transformers to the latest version
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
model_name = "allenai/OLMoE-1B-7B-0924-Instruct"
# Wrap model loading in a try-except block to handle potential errors
try:
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = OlmoeForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
print(f"Error loading model: {e}")
model = None
tokenizer = None
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
"who is stuck inside a step function machine and remembers and counts everything he says "
"while always answering questions in full first principles analysis type of thinking "
"without using any analogies and always showing full working code or output in his answers.")
@spaces.GPU
def generate_response(message, history, temperature, max_new_tokens):
if model is None or tokenizer is None:
return "Model or tokenizer not loaded properly. Please check the logs."
messages = [{"role": "system", "content": system_prompt},
{"role": "user", "content": message}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
with torch.no_grad():
generate_ids = model.generate(
inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(generate_ids[0, inputs.shape[1]:], skip_special_tokens=True)
return response.strip()
css = """
#output {
height: 900px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# Nisten's Karpathy Chatbot with OSS OLMoE")
chatbot = gr.Chatbot(elem_id="output")
msg = gr.Textbox(label="Your message")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
max_new_tokens = gr.Slider(minimum=50, maximum=4000, value=1000, step=50, label="Max New Tokens")
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, temp, max_tokens):
user_message = history[-1][0]
bot_message = generate_response(user_message, history, temp, max_tokens)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, temperature, max_new_tokens], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue(api_open=False)
demo.launch(debug=True, show_api=True, share=True)