Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
import subprocess
|
6 |
import sys
|
@@ -8,12 +8,13 @@ import sys
|
|
8 |
# Force install the specific transformers version from the GitHub PR
|
9 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-deps", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
|
10 |
|
11 |
-
model_name = "allenai/OLMoE-1B-7B-0924
|
12 |
|
13 |
# Wrap model loading in a try-except block to handle potential errors
|
14 |
try:
|
15 |
-
|
16 |
-
|
|
|
17 |
except Exception as e:
|
18 |
print(f"Error loading model: {e}")
|
19 |
model = None
|
@@ -24,48 +25,56 @@ system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
|
|
24 |
"while always answering questions in full first principles analysis type of thinking "
|
25 |
"without using any analogies and always showing full working code or output in his answers.")
|
26 |
|
27 |
-
user_prompt = '<|user|>\n'
|
28 |
-
assistant_prompt = '<|assistant|>\n'
|
29 |
-
prompt_suffix = "<|end|>\n"
|
30 |
-
|
31 |
@spaces.GPU
|
32 |
-
def generate_response(message, history):
|
33 |
if model is None or tokenizer is None:
|
34 |
return "Model or tokenizer not loaded properly. Please check the logs."
|
35 |
|
36 |
-
full_prompt = f"{system_prompt}\n{
|
|
|
|
|
|
|
37 |
|
38 |
-
inputs = tokenizer(full_prompt, return_tensors="pt").to("cuda:0")
|
39 |
with torch.no_grad():
|
40 |
generate_ids = model.generate(
|
41 |
**inputs,
|
42 |
-
max_new_tokens
|
43 |
do_sample=True,
|
44 |
-
temperature=
|
45 |
-
eos_token_id=tokenizer.eos_token_id,
|
46 |
)
|
47 |
-
response = tokenizer.
|
48 |
-
|
49 |
-
|
50 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
with gr.Blocks() as demo:
|
53 |
-
gr.Markdown("#
|
54 |
-
chatbot = gr.Chatbot()
|
55 |
-
msg = gr.Textbox()
|
|
|
|
|
|
|
56 |
clear = gr.Button("Clear")
|
57 |
|
58 |
def user(user_message, history):
|
59 |
return "", history + [[user_message, None]]
|
60 |
|
61 |
-
def bot(history):
|
62 |
user_message = history[-1][0]
|
63 |
-
bot_message = generate_response(user_message, history)
|
64 |
history[-1][1] = bot_message
|
65 |
return history
|
66 |
|
67 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
68 |
-
bot, chatbot, chatbot
|
69 |
)
|
70 |
clear.click(lambda: None, None, chatbot, queue=False)
|
71 |
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import OlmoeForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
import subprocess
|
6 |
import sys
|
|
|
8 |
# Force install the specific transformers version from the GitHub PR
|
9 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-deps", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
|
10 |
|
11 |
+
model_name = "allenai/OLMoE-1B-7B-0924"
|
12 |
|
13 |
# Wrap model loading in a try-except block to handle potential errors
|
14 |
try:
|
15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
model = OlmoeForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to(DEVICE)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
except Exception as e:
|
19 |
print(f"Error loading model: {e}")
|
20 |
model = None
|
|
|
25 |
"while always answering questions in full first principles analysis type of thinking "
|
26 |
"without using any analogies and always showing full working code or output in his answers.")
|
27 |
|
|
|
|
|
|
|
|
|
28 |
@spaces.GPU
|
29 |
+
def generate_response(message, history, temperature, max_new_tokens):
|
30 |
if model is None or tokenizer is None:
|
31 |
return "Model or tokenizer not loaded properly. Please check the logs."
|
32 |
|
33 |
+
full_prompt = f"{system_prompt}\n\nHuman: {message}\n\nAssistant:"
|
34 |
+
|
35 |
+
inputs = tokenizer(full_prompt, return_tensors="pt")
|
36 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
37 |
|
|
|
38 |
with torch.no_grad():
|
39 |
generate_ids = model.generate(
|
40 |
**inputs,
|
41 |
+
max_length=inputs['input_ids'].shape[1] + max_new_tokens,
|
42 |
do_sample=True,
|
43 |
+
temperature=temperature,
|
|
|
44 |
)
|
45 |
+
response = tokenizer.decode(generate_ids[0], skip_special_tokens=True)
|
46 |
+
# Extract only the assistant's response
|
47 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
48 |
+
return assistant_response
|
49 |
+
|
50 |
+
css = """
|
51 |
+
#output {
|
52 |
+
height: 500px;
|
53 |
+
overflow: auto;
|
54 |
+
border: 1px solid #ccc;
|
55 |
+
}
|
56 |
+
"""
|
57 |
|
58 |
+
with gr.Blocks(css=css) as demo:
|
59 |
+
gr.Markdown("# Nisten's Karpathy Chatbot with OSS olMoE")
|
60 |
+
chatbot = gr.Chatbot(elem_id="output")
|
61 |
+
msg = gr.Textbox(label="Your message")
|
62 |
+
with gr.Row():
|
63 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
64 |
+
max_new_tokens = gr.Slider(minimum=50, maximum=4000, value=1000, step=50, label="Max New Tokens")
|
65 |
clear = gr.Button("Clear")
|
66 |
|
67 |
def user(user_message, history):
|
68 |
return "", history + [[user_message, None]]
|
69 |
|
70 |
+
def bot(history, temp, max_tokens):
|
71 |
user_message = history[-1][0]
|
72 |
+
bot_message = generate_response(user_message, history, temp, max_tokens)
|
73 |
history[-1][1] = bot_message
|
74 |
return history
|
75 |
|
76 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
77 |
+
bot, [chatbot, temperature, max_new_tokens], chatbot
|
78 |
)
|
79 |
clear.click(lambda: None, None, chatbot, queue=False)
|
80 |
|