Spaces:
Runtime error
Runtime error
import gradio as gr | |
gr.Interface.load("models/nitinbhayana/Llama-2-7b-chat-hf-keyword-category-brand-v1").launch() | |
# from transformers import pipeline | |
# pipeline = pipeline("text-generation", model="nitinbhayana/Llama-2-7b-chat-hf-keyword-category-brand-v1") | |
# def predict(search_term): | |
# prompt=f"""[INST] <<SYS>> | |
# You are a helpful assistant that provides accurate and concise responses. Do not hallucinate. | |
# <</SYS>> | |
# Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
# ### Instruction: | |
# Analyze the following keyword searched on amazon with intent of shopping. Identify the product category from the list ['Baby Products', 'Bags, Wallets and Luggage', 'Beauty', 'Books', 'Car & Motorbike', 'Clothing & Accessories', 'Computers & Accessories', 'Electronics', 'Garden & Outdoors', 'Gift Cards', 'Grocery & Gourmet Foods', 'Health & Personal Care', 'Home & Kitchen', 'Home Improvement', 'Industrial & Scientific', 'Jewellery', 'Kindle Store', 'Movies & TV Shows', 'Music', 'Musical Instruments', 'Office Products', 'Pet Supplies', 'Shoes & Handbags', 'Software', 'Sports, Fitness & Outdoors', 'Toys & Games', 'Video Games', 'Watches']. Extract the brand from keyword related to brand loyalty intent.\nOutput in JSON with keyword, product category, brand as keys. | |
# ### Input: | |
# {search_term} | |
# [/INST]""" | |
# predictions = pipeline(prompt) | |
# return (predictions) | |
# gr.Interface( | |
# predict, | |
# inputs='text', | |
# outputs='text', | |
# title="Keyword-Category-Brand-Mapping", | |
# ).launch() | |