File size: 12,795 Bytes
13e108d b52c99a 13e108d b52c99a 13e108d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import argparse
import os
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from huggingface_hub import PyTorchModelHubMixin
from isnet import ISNetDIS, ISNetGTEncoder
# warnings.filterwarnings("ignore")
net_names = ["isnet_is", "isnet", "isnet_gt", "u2net", "u2netl", "modnet", "inspyrnet_res", "inspyrnet_swin"]
def get_net(net_name, img_size):
if net_name == "isnet":
return ISNetDIS()
elif net_name == "isnet_is":
return ISNetDIS()
elif net_name == "isnet_gt":
return ISNetGTEncoder()
raise NotImplementedError
def f1_torch(pred, gt):
# micro F1-score
pred = pred.float().view(pred.shape[0], -1)
gt = gt.float().view(gt.shape[0], -1)
tp1 = torch.sum(pred * gt, dim=1)
tp_fp1 = torch.sum(pred, dim=1)
tp_fn1 = torch.sum(gt, dim=1)
pred = 1 - pred
gt = 1 - gt
tp2 = torch.sum(pred * gt, dim=1)
tp_fp2 = torch.sum(pred, dim=1)
tp_fn2 = torch.sum(gt, dim=1)
precision = (tp1 + tp2) / (tp_fp1 + tp_fp2 + 0.0001)
recall = (tp1 + tp2) / (tp_fn1 + tp_fn2 + 0.0001)
f1 = (1 + 0.3) * precision * recall / (0.3 * precision + recall + 0.0001)
return precision, recall, f1
class AnimeSegmentation(pl.LightningModule,
PyTorchModelHubMixin,
library_name="anime_segmentation",
repo_url="https://github.com/SkyTNT/anime-segmentation",
tags=["image-segmentation"]
):
def __init__(self, net_name, img_size=None, lr=1e-3):
super().__init__()
assert net_name in net_names
self.img_size = img_size
self.lr = lr
self.net = get_net(net_name, img_size)
if net_name == "isnet_is":
self.gt_encoder = get_net("isnet_gt", img_size)
self.gt_encoder.requires_grad_(False)
else:
self.gt_encoder = None
@classmethod
def try_load(cls, net_name, ckpt_path, map_location=None, img_size=None):
state_dict = torch.load(ckpt_path, map_location=map_location)
if "epoch" in state_dict:
return cls.load_from_checkpoint(ckpt_path, net_name=net_name, img_size=img_size, map_location=map_location)
else:
model = cls(net_name, img_size)
if any([k.startswith("net.") for k, v in state_dict.items()]):
model.load_state_dict(state_dict)
else:
model.net.load_state_dict(state_dict)
return model
def configure_optimizers(self):
optimizer = optim.Adam(self.net.parameters(), lr=self.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
return optimizer
def forward(self, x):
if isinstance(self.net, ISNetDIS):
return self.net(x)[0][0].sigmoid()
if isinstance(self.net, ISNetGTEncoder):
return self.net(x)[0][0].sigmoid()
elif isinstance(self.net, U2NET):
return self.net(x)[0].sigmoid()
elif isinstance(self.net, MODNet):
return self.net(x, True)[2]
elif isinstance(self.net, InSPyReNet):
return self.net.forward_inference(x)["pred"]
raise NotImplementedError
def training_step(self, batch, batch_idx):
images, labels = batch["image"], batch["label"]
if isinstance(self.net, ISNetDIS):
ds, dfs = self.net(images)
loss_args = [ds, dfs, labels]
if self.gt_encoder is not None:
fs = self.gt_encoder(labels)[1]
loss_args.append(fs)
elif isinstance(self.net, ISNetGTEncoder):
ds = self.net(labels)[0]
loss_args = [ds, labels]
elif isinstance(self.net, U2NET):
ds = self.net(images)
loss_args = [ds, labels]
elif isinstance(self.net, MODNet):
trimaps = batch["trimap"]
pred_semantic, pred_detail, pred_matte = self.net(images, False)
loss_args = [pred_semantic, pred_detail, pred_matte, images, trimaps, labels]
elif isinstance(self.net, InSPyReNet):
out = self.net.forward_train(images, labels)
loss_args = out
else:
raise NotImplementedError
loss0, loss = self.net.compute_loss(loss_args)
self.log_dict({"train/loss": loss, "train/loss_tar": loss0})
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch["image"], batch["label"]
if isinstance(self.net, ISNetGTEncoder):
preds = self.forward(labels)
else:
preds = self.forward(images)
pre, rec, f1, = f1_torch(preds.nan_to_num(nan=0, posinf=1, neginf=0), labels)
mae_m = F.l1_loss(preds, labels, reduction="mean")
pre_m = pre.mean()
rec_m = rec.mean()
f1_m = f1.mean()
self.log_dict({"val/precision": pre_m, "val/recall": rec_m, "val/f1": f1_m, "val/mae": mae_m}, sync_dist=True)
def get_gt_encoder(train_dataloader, val_dataloader, opt):
print("---start train ground truth encoder---")
gt_encoder = AnimeSegmentation("isnet_gt")
trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
devices=opt.devices, max_epochs=opt.gt_epoch,
benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
)
trainer.fit(gt_encoder, train_dataloader, val_dataloader)
return gt_encoder.net
def main(opt):
if not os.path.exists("lightning_logs"):
os.mkdir("lightning_logs")
train_dataset, val_dataset = create_training_datasets(opt.data_dir, opt.fg_dir, opt.bg_dir, opt.img_dir,
opt.mask_dir, opt.fg_ext, opt.bg_ext, opt.img_ext,
opt.mask_ext, opt.data_split, opt.img_size,
with_trimap=opt.net == "modnet",
cache_ratio=opt.cache, cache_update_epoch=opt.cache_epoch)
train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size_train, shuffle=True, persistent_workers=True,
num_workers=opt.workers_train, pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=opt.batch_size_val, shuffle=False, persistent_workers=True,
num_workers=opt.workers_val, pin_memory=True)
print("---define model---")
if opt.pretrained_ckpt == "":
anime_seg = AnimeSegmentation(opt.net, opt.img_size)
else:
anime_seg = AnimeSegmentation.try_load(opt.net, opt.pretrained_ckpt, "cpu", opt.img_size)
if not opt.pretrained_ckpt and not opt.resume_ckpt and opt.net == "isnet_is":
anime_seg.gt_encoder.load_state_dict(get_gt_encoder(train_dataloader, val_dataloader, opt).state_dict())
anime_seg.lr = opt.lr
print("---start train---")
checkpoint_callback = ModelCheckpoint(monitor='val/f1', mode="max", save_top_k=1, save_last=True,
auto_insert_metric_name=False, filename="epoch={epoch},f1={val/f1:.4f}")
trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
devices=opt.devices, max_epochs=opt.epoch,
benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
callbacks=[checkpoint_callback])
trainer.fit(anime_seg, train_dataloader, val_dataloader, ckpt_path=opt.resume_ckpt or None)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument('--net', type=str, default='isnet_is',
choices=net_names,
help='isnet_is: Train ISNet with intermediate feature supervision, '
'isnet: Train ISNet, '
'u2net: Train U2Net full, '
'u2netl: Train U2Net lite, '
'modnet: Train MODNet'
'inspyrnet_res: Train InSPyReNet_Res2Net50'
'inspyrnet_swin: Train InSPyReNet_SwinB')
parser.add_argument('--pretrained-ckpt', type=str, default='',
help='load form pretrained ckpt')
parser.add_argument('--resume-ckpt', type=str, default='',
help='resume training from ckpt')
parser.add_argument('--img-size', type=int, default=1024,
help='image size for training and validation,'
'1024 recommend for ISNet,'
'384 recommend for InSPyReNet'
'640 recommend for others,')
# dataset args
parser.add_argument('--data-dir', type=str, default='../../dataset/anime-seg',
help='root dir of dataset')
parser.add_argument('--fg-dir', type=str, default='fg',
help='relative dir of foreground')
parser.add_argument('--bg-dir', type=str, default='bg',
help='relative dir of background')
parser.add_argument('--img-dir', type=str, default='imgs',
help='relative dir of images')
parser.add_argument('--mask-dir', type=str, default='masks',
help='relative dir of masks')
parser.add_argument('--fg-ext', type=str, default='.png',
help='extension name of foreground')
parser.add_argument('--bg-ext', type=str, default='.jpg',
help='extension name of background')
parser.add_argument('--img-ext', type=str, default='.jpg',
help='extension name of images')
parser.add_argument('--mask-ext', type=str, default='.jpg',
help='extension name of masks')
parser.add_argument('--data-split', type=float, default=0.95,
help='split rate for training and validation')
# training args
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate')
parser.add_argument('--epoch', type=int, default=40,
help='epoch num')
parser.add_argument('--gt-epoch', type=int, default=4,
help='epoch for training ground truth encoder when net is isnet_is')
parser.add_argument('--batch-size-train', type=int, default=2,
help='batch size for training')
parser.add_argument('--batch-size-val', type=int, default=2,
help='batch size for val')
parser.add_argument('--workers-train', type=int, default=4,
help='workers num for training dataloader')
parser.add_argument('--workers-val', type=int, default=4,
help='workers num for validation dataloader')
parser.add_argument('--acc-step', type=int, default=4,
help='gradient accumulation step')
parser.add_argument('--accelerator', type=str, default="gpu",
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
help='accelerator')
parser.add_argument('--devices', type=int, default=1,
help='devices num')
parser.add_argument('--fp32', action='store_true', default=False,
help='disable mix precision')
parser.add_argument('--benchmark', action='store_true', default=False,
help='enable cudnn benchmark')
parser.add_argument('--log-step', type=int, default=2,
help='log training loss every n steps')
parser.add_argument('--val-epoch', type=int, default=1,
help='valid and save every n epoch')
parser.add_argument('--cache-epoch', type=int, default=3,
help='update cache every n epoch')
parser.add_argument('--cache', type=float, default=0,
help='ratio (cache to entire training dataset), '
'higher values require more memory, set 0 to disable cache')
opt = parser.parse_args()
print(opt)
main(opt) |