File size: 12,795 Bytes
13e108d
 
 
 
 
 
 
 
 
 
 
 
b52c99a
13e108d
 
 
 
 
 
 
 
 
 
 
b52c99a
 
13e108d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import os

import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from huggingface_hub import PyTorchModelHubMixin

from isnet import ISNetDIS, ISNetGTEncoder


# warnings.filterwarnings("ignore")

net_names = ["isnet_is", "isnet", "isnet_gt", "u2net", "u2netl", "modnet", "inspyrnet_res", "inspyrnet_swin"]

def get_net(net_name, img_size):
    if net_name == "isnet":
        return ISNetDIS()
    elif net_name == "isnet_is":
        return ISNetDIS()
    elif net_name == "isnet_gt":
        return ISNetGTEncoder()
    raise NotImplementedError


def f1_torch(pred, gt):
    # micro F1-score
    pred = pred.float().view(pred.shape[0], -1)
    gt = gt.float().view(gt.shape[0], -1)
    tp1 = torch.sum(pred * gt, dim=1)
    tp_fp1 = torch.sum(pred, dim=1)
    tp_fn1 = torch.sum(gt, dim=1)
    pred = 1 - pred
    gt = 1 - gt
    tp2 = torch.sum(pred * gt, dim=1)
    tp_fp2 = torch.sum(pred, dim=1)
    tp_fn2 = torch.sum(gt, dim=1)
    precision = (tp1 + tp2) / (tp_fp1 + tp_fp2 + 0.0001)
    recall = (tp1 + tp2) / (tp_fn1 + tp_fn2 + 0.0001)
    f1 = (1 + 0.3) * precision * recall / (0.3 * precision + recall + 0.0001)
    return precision, recall, f1


class AnimeSegmentation(pl.LightningModule,
                        PyTorchModelHubMixin,
                        library_name="anime_segmentation",
                        repo_url="https://github.com/SkyTNT/anime-segmentation",
                        tags=["image-segmentation"]
                        ):

    def __init__(self, net_name, img_size=None, lr=1e-3):
        super().__init__()
        assert net_name in net_names
        self.img_size = img_size
        self.lr = lr
        self.net = get_net(net_name, img_size)
        if net_name == "isnet_is":
            self.gt_encoder = get_net("isnet_gt", img_size)
            self.gt_encoder.requires_grad_(False)
        else:
            self.gt_encoder = None

    @classmethod
    def try_load(cls, net_name, ckpt_path, map_location=None, img_size=None):
        state_dict = torch.load(ckpt_path, map_location=map_location)
        if "epoch" in state_dict:
            return cls.load_from_checkpoint(ckpt_path, net_name=net_name, img_size=img_size, map_location=map_location)
        else:
            model = cls(net_name, img_size)
            if any([k.startswith("net.") for k, v in state_dict.items()]):
                model.load_state_dict(state_dict)
            else:
                model.net.load_state_dict(state_dict)
            return model

    def configure_optimizers(self):
        optimizer = optim.Adam(self.net.parameters(), lr=self.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
        return optimizer

    def forward(self, x):
        if isinstance(self.net, ISNetDIS):
            return self.net(x)[0][0].sigmoid()
        if isinstance(self.net, ISNetGTEncoder):
            return self.net(x)[0][0].sigmoid()
        elif isinstance(self.net, U2NET):
            return self.net(x)[0].sigmoid()
        elif isinstance(self.net, MODNet):
            return self.net(x, True)[2]
        elif isinstance(self.net, InSPyReNet):
            return self.net.forward_inference(x)["pred"]
        raise NotImplementedError

    def training_step(self, batch, batch_idx):
        images, labels = batch["image"], batch["label"]
        if isinstance(self.net, ISNetDIS):
            ds, dfs = self.net(images)
            loss_args = [ds, dfs, labels]
            if self.gt_encoder is not None:
                fs = self.gt_encoder(labels)[1]
                loss_args.append(fs)
        elif isinstance(self.net, ISNetGTEncoder):
            ds = self.net(labels)[0]
            loss_args = [ds, labels]
        elif isinstance(self.net, U2NET):
            ds = self.net(images)
            loss_args = [ds, labels]
        elif isinstance(self.net, MODNet):
            trimaps = batch["trimap"]
            pred_semantic, pred_detail, pred_matte = self.net(images, False)
            loss_args = [pred_semantic, pred_detail, pred_matte, images, trimaps, labels]
        elif isinstance(self.net, InSPyReNet):
            out = self.net.forward_train(images, labels)
            loss_args = out
        else:
            raise NotImplementedError

        loss0, loss = self.net.compute_loss(loss_args)
        self.log_dict({"train/loss": loss, "train/loss_tar": loss0})
        return loss

    def validation_step(self, batch, batch_idx):
        images, labels = batch["image"], batch["label"]
        if isinstance(self.net, ISNetGTEncoder):
            preds = self.forward(labels)
        else:
            preds = self.forward(images)
        pre, rec, f1, = f1_torch(preds.nan_to_num(nan=0, posinf=1, neginf=0), labels)
        mae_m = F.l1_loss(preds, labels, reduction="mean")
        pre_m = pre.mean()
        rec_m = rec.mean()
        f1_m = f1.mean()
        self.log_dict({"val/precision": pre_m, "val/recall": rec_m, "val/f1": f1_m, "val/mae": mae_m}, sync_dist=True)


def get_gt_encoder(train_dataloader, val_dataloader, opt):
    print("---start train ground truth encoder---")
    gt_encoder = AnimeSegmentation("isnet_gt")
    trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
                      devices=opt.devices, max_epochs=opt.gt_epoch,
                      benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
                      check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
                      strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
                      )
    trainer.fit(gt_encoder, train_dataloader, val_dataloader)
    return gt_encoder.net


def main(opt):
    if not os.path.exists("lightning_logs"):
        os.mkdir("lightning_logs")

    train_dataset, val_dataset = create_training_datasets(opt.data_dir, opt.fg_dir, opt.bg_dir, opt.img_dir,
                                                          opt.mask_dir, opt.fg_ext, opt.bg_ext, opt.img_ext,
                                                          opt.mask_ext, opt.data_split, opt.img_size,
                                                          with_trimap=opt.net == "modnet",
                                                          cache_ratio=opt.cache, cache_update_epoch=opt.cache_epoch)

    train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size_train, shuffle=True, persistent_workers=True,
                                  num_workers=opt.workers_train, pin_memory=True)
    val_dataloader = DataLoader(val_dataset, batch_size=opt.batch_size_val, shuffle=False, persistent_workers=True,
                                num_workers=opt.workers_val, pin_memory=True)
    print("---define model---")

    if opt.pretrained_ckpt == "":
        anime_seg = AnimeSegmentation(opt.net, opt.img_size)
    else:
        anime_seg = AnimeSegmentation.try_load(opt.net, opt.pretrained_ckpt, "cpu", opt.img_size)
    if not opt.pretrained_ckpt and not opt.resume_ckpt and opt.net == "isnet_is":
        anime_seg.gt_encoder.load_state_dict(get_gt_encoder(train_dataloader, val_dataloader, opt).state_dict())
    anime_seg.lr = opt.lr

    print("---start train---")
    checkpoint_callback = ModelCheckpoint(monitor='val/f1', mode="max", save_top_k=1, save_last=True,
                                          auto_insert_metric_name=False, filename="epoch={epoch},f1={val/f1:.4f}")
    trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
                      devices=opt.devices, max_epochs=opt.epoch,
                      benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
                      check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
                      strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
                      callbacks=[checkpoint_callback])
    trainer.fit(anime_seg, train_dataloader, val_dataloader, ckpt_path=opt.resume_ckpt or None)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # model args
    parser.add_argument('--net', type=str, default='isnet_is',
                        choices=net_names,
                        help='isnet_is: Train ISNet with intermediate feature supervision, '
                             'isnet: Train ISNet, '
                             'u2net: Train U2Net full, '
                             'u2netl: Train U2Net lite, '
                             'modnet: Train MODNet'
                             'inspyrnet_res: Train InSPyReNet_Res2Net50'
                             'inspyrnet_swin: Train InSPyReNet_SwinB')
    parser.add_argument('--pretrained-ckpt', type=str, default='',
                        help='load form pretrained ckpt')
    parser.add_argument('--resume-ckpt', type=str, default='',
                        help='resume training from ckpt')
    parser.add_argument('--img-size', type=int, default=1024,
                        help='image size for training and validation,'
                             '1024 recommend for ISNet,'
                             '384 recommend for InSPyReNet'
                             '640 recommend for others,')

    # dataset args
    parser.add_argument('--data-dir', type=str, default='../../dataset/anime-seg',
                        help='root dir of dataset')
    parser.add_argument('--fg-dir', type=str, default='fg',
                        help='relative dir of foreground')
    parser.add_argument('--bg-dir', type=str, default='bg',
                        help='relative dir of background')
    parser.add_argument('--img-dir', type=str, default='imgs',
                        help='relative dir of images')
    parser.add_argument('--mask-dir', type=str, default='masks',
                        help='relative dir of masks')
    parser.add_argument('--fg-ext', type=str, default='.png',
                        help='extension name of foreground')
    parser.add_argument('--bg-ext', type=str, default='.jpg',
                        help='extension name of background')
    parser.add_argument('--img-ext', type=str, default='.jpg',
                        help='extension name of images')
    parser.add_argument('--mask-ext', type=str, default='.jpg',
                        help='extension name of masks')
    parser.add_argument('--data-split', type=float, default=0.95,
                        help='split rate for training and validation')

    # training args
    parser.add_argument('--lr', type=float, default=1e-4,
                        help='learning rate')
    parser.add_argument('--epoch', type=int, default=40,
                        help='epoch num')
    parser.add_argument('--gt-epoch', type=int, default=4,
                        help='epoch for training ground truth encoder when net is isnet_is')
    parser.add_argument('--batch-size-train', type=int, default=2,
                        help='batch size for training')
    parser.add_argument('--batch-size-val', type=int, default=2,
                        help='batch size for val')
    parser.add_argument('--workers-train', type=int, default=4,
                        help='workers num for training dataloader')
    parser.add_argument('--workers-val', type=int, default=4,
                        help='workers num for validation dataloader')
    parser.add_argument('--acc-step', type=int, default=4,
                        help='gradient accumulation step')
    parser.add_argument('--accelerator', type=str, default="gpu",
                        choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
                        help='accelerator')
    parser.add_argument('--devices', type=int, default=1,
                        help='devices num')
    parser.add_argument('--fp32', action='store_true', default=False,
                        help='disable mix precision')
    parser.add_argument('--benchmark', action='store_true', default=False,
                        help='enable cudnn benchmark')
    parser.add_argument('--log-step', type=int, default=2,
                        help='log training loss every n steps')
    parser.add_argument('--val-epoch', type=int, default=1,
                        help='valid and save every n epoch')
    parser.add_argument('--cache-epoch', type=int, default=3,
                        help='update cache every n epoch')
    parser.add_argument('--cache', type=float, default=0,
                        help='ratio (cache to entire training dataset), '
                             'higher values require more memory, set 0 to disable cache')

    opt = parser.parse_args()
    print(opt)

    main(opt)