File size: 2,213 Bytes
011c6b2 0c7ffdb 79ecc72 0c7ffdb 79ecc72 0c7ffdb 60eae40 79ecc72 0c7ffdb 79ecc72 0c7ffdb 79ecc72 011c6b2 79ecc72 011c6b2 79ecc72 0c7ffdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import textract
import docx2txt
import pdfplumber
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
st.title("Text Similarity Model")
task = 'Given a web search query, retrieve relevant passages that answer the query'
docs = st.sidebar.file_uploader("Upload documents", accept_multiple_files=True, type=['txt','pdf','xlsx','docx'])
query = st.text_input("Enter search query")
click = st.button("Search")
def extract_text(doc):
if doc.type == 'text/plain':
return doc.getvalue().decode("utf-8")
if doc.type == "application/pdf":
with pdfplumber.open(doc) as pdf:
pages = [page.extract_text() for page in pdf.pages]
return "\n".join(pages)
if doc.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return docx2txt.process(doc)
if doc.name.endswith(".xlsx"):
text = textract.process(doc)
return text.decode("utf-8")
return None
if click and query:
doc_contents = []
for doc in docs:
# Extract text from each document
doc_text = extract_text(doc)
doc_contents.append(doc_text)
doc_embeddings = get_embeddings(doc_contents)
query_embedding = get_embedding(query)
scores = compute_similarity(query_embedding, doc_embeddings)
ranked_docs = get_ranked_docs(scores)
st.write("Most Relevant Documents")
for doc, score in ranked_docs:
st.write(f"{doc.name} (score: {score:.2f})")
|