Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
def calculate_cost(num_pairs, gpu_type): | |
if gpu_type == "Nvidia A100": | |
daily_rate = 28 | |
time_per_pair = 1 # minute | |
elif gpu_type == "H100 80GB PCIe": | |
daily_rate = 78.96 | |
time_per_pair = 0.5 # assuming it's twice as fast | |
else: # AWS p4d.24xlarge | |
daily_rate = 786.48 | |
time_per_pair = 0.25 # assuming it's four times as fast due to 8 GPUs | |
total_time_minutes = num_pairs * time_per_pair | |
total_time_hours = total_time_minutes / 60 | |
hourly_rate = daily_rate / 24 | |
total_cost = total_time_hours * hourly_rate | |
return total_cost | |
st.set_page_config(page_title="GPU Cost Calculator", page_icon="🧮", layout="wide") | |
st.title("GPU Cost Calculator") | |
# Input for number of pairs | |
num_pairs = st.number_input("Enter the number of pairs to process:", min_value=1, value=5) | |
# Select GPU type | |
gpu_type = st.selectbox( | |
"Select GPU type:", | |
("Nvidia A100", "H100 80GB PCIe", "AWS p4d.24xlarge (8x A100)") | |
) | |
# Calculate button | |
if st.button("Calculate Cost"): | |
cost = calculate_cost(num_pairs, gpu_type) | |
st.write(f"Estimated cost for processing {num_pairs} pairs on {gpu_type}: ${cost:.4f}") | |
# Display GPU information | |
st.subheader("GPU Information") | |
gpu_data = { | |
"Provider": ["H100 80GB PCIe", "AWS (p4d.24xlarge)", "GPU Mart"], | |
"GPU": ["Nvidia H100", "Nvidia A100 (8 GPUs)", "Nvidia A100"], | |
"vCPUs": [16, 96, "Dual 18-Core E5-2697v4"], | |
"RAM": ["125 GB", "1152 GiB", "256 GB"], | |
"GPU Memory": ["80 GB", "320 GB (8 x 40 GB)", "40 GB HBM2e"], | |
"Instance Storage": ["Network Storage: 10Pb+", "8 x 1000 GB NVMe SSD", "240 GB SSD + 2TB NVMe + 8TB SATA"], | |
"Network Bandwidth": ["Not Specified", "400 Gbps", "100Mbps - 1Gbps"], | |
"On-Demand Price/hr": ["$3.29", "$32.77", "N/A"], | |
"Daily Price": ["$78.96", "$786.48", "$28.00"], | |
"Monthly Price": ["$2,368.80", "$23,594.40", "$799.00"], | |
"1-Year Reserved (Hourly)": ["N/A", "$19.22", "N/A"], | |
"3-Year Reserved (Hourly)": ["N/A", "$11.57", "N/A"] | |
} | |
df = pd.DataFrame(gpu_data) | |
st.table(df) | |