import gradio as gr import spaces import random import torch from diffusers import FluxPipeline pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) pipeline.load_lora_weights("pepper13/fluxfw") # pipeline.to("cuda") @spaces.GPU(duration=70) def generate(prompt): pipe_end = pipeline(prompt=prompt, width=512, height=512, num_inference_steps=24, guidance_scale=7) image = pipe_end.images[0] return image with open("main.css", "r") as link: with gr.Blocks(css=link) as interface: with gr.Column(elem_classes="interface-container"): prompt = gr.Textbox( label="Prompt", info="Describe the image you want to generate.", placeholder="e.g., Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", # lines=1, elem_classes="text-box" ) generate_button = gr.Button("Generate Image", elem_classes="btn") output = gr.Image(elem_classes="image-output") generate_button.click( fn=generate, inputs=[prompt], outputs=[output] ) if __name__ == "__main__": interface.launch()