import gc import numpy as np import requests as rq import torch from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, PreTrainedTokenizerFast, TrainingArguments from datasets import load_dataset from tokenizers import ByteLevelBPETokenizer import trl dataset = load_dataset("nroggendorff/openhermes", split="train")#.select(range(int(4e+4))) def get_training_corpus(): for i in range(0, len(dataset), 1000): yield dataset[i : i + 1000]["text"] training_corpus = get_training_corpus() tokenizer = ByteLevelBPETokenizer() tokenizer.train_from_iterator( training_corpus, vocab_size=3200, min_frequency=2, special_tokens=["", "", "", "", "", "<|user|>", "<|bot|>", "<|end|>"] ) tokenizer.save("/tmp/custom_tokenizer.json") tokenizer = PreTrainedTokenizerFast(tokenizer_file="/tmp/custom_tokenizer.json") tokenizer.bos_token = "" tokenizer.eos_token = "" tokenizer.unk_token = "" tokenizer.pad_token = "" tokenizer.mask_token = "" tokenizer.additional_special_tokens = ["<|user|>", "<|bot|>", "<|end|>"] tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>") tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>") chat_template = "{{bos_token}}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}" tokenizer.chat_template = chat_template tokenizer.add_special_tokens({ "additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"] }) tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>") tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>") tokenizer.save_pretrained("/tmp/llama-tokenizer") tokenizer = AutoTokenizer.from_pretrained("/tmp/llama-tokenizer") print(tokenizer.apply_chat_template([{"role": "user", "content": "Why is the sky blue?"}, {"role": "assistant", "content": "Due to rayleigh scattering."}, {"role": "user", "content": "That's cool."}, {"role": "assistant", "content": "Yeah, I agree."}], tokenize=False)) config = LlamaConfig( vocab_size=tokenizer.vocab_size, hidden_size=512 * 2, intermediate_size=1024 * 2, num_hidden_layers=8 * 2, num_attention_heads=8 * 2, max_position_embeddings=512 * 2, rms_norm_eps=1e-6, initializer_range=0.02, use_cache=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, tie_word_embeddings=False, ) model = LlamaForCausalLM(config) def format_prompts(examples): texts = [] for text in examples['text']: conversation = [] parts = text.split('<|end|>') for i in range(0, len(parts) - 1, 2): prompt = parts[i].replace("<|user|>", "") response = parts[i + 1].replace("<|bot|>", "") conversation.append({"role": "user", "content": prompt}) conversation.append({"role": "assistant", "content": response}) formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False) texts.append(formatted_conversation) output = {} output['text'] = texts return output dataset = dataset.map(format_prompts, batched=True) print(dataset['text'][2]) args = TrainingArguments( output_dir="mayo", num_train_epochs=2, per_device_train_batch_size=16, gradient_accumulation_steps=4, learning_rate=1e-5, fp16=True, optim="sgd", optim_target_modules=["attn", "mlp"] ) trainer = trl.SFTTrainer( model=model, tokenizer=tokenizer, args=args, train_dataset=dataset, dataset_text_field='text', max_seq_length=512 ) torch.cuda.set_device(0) gc.collect() torch.cuda.empty_cache() trainer.train() #trainer.push_to_hub() trained_model = trainer.model trained_tokenizer = trainer.tokenizer repo_id = "makeshift-mayo" trained_model.push_to_hub(repo_id) trained_tokenizer.push_to_hub(repo_id) raise RuntimeError("The script is finished.")