zelda-lora / app.py
nroggendorff's picture
Update app.py
aed8f76 verified
import gradio as gr
import spaces
import torch
from diffusers import StableDiffusionXLPipeline
pipeline = StableDiffusionXLPipeline.from_pretrained("nroggendorff/animexl")
pipeline.load_lora_weights("nroggendorff/zelda-lora")
pipeline.to("cuda")
@spaces.GPU
def generate(prompt, negative_prompt, width, height, sample_steps):
return pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0]
with gr.Blocks() as interface:
with gr.Column():
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="A perfectly red apple, 32k HDR", lines=4, interactive=True)
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality, jewelry", lines=4, interactive=True)
with gr.Column():
generate_button = gr.Button("Generate")
output = gr.Image()
with gr.Row():
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
with gr.Column():
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
with gr.Column():
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
if __name__ == "__main__":
interface.launch()