WaveGRU-Text-To-Speech / wavegru_mod.cc
NTT123
finalize the small model.
e4abdca
/*
WaveGRU:
> Embed > GRU > O1 > O2 > Sampling > ...
*/
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <iostream>
#include <random>
#include <vector>
#include "sparse_matmul/sparse_matmul.h"
namespace py = pybind11;
using namespace std;
using fvec = std::vector<float>;
using ivec = std::vector<int>;
using fndarray = py::array_t<float>;
using indarray = py::array_t<int>;
using mat = csrblocksparse::CsrBlockSparseMatrix<float, float, int16_t>;
using vec = csrblocksparse::CacheAlignedVector<float>;
using masked_mat = csrblocksparse::MaskedSparseMatrix<float>;
mat create_mat(int h, int w) {
auto m = masked_mat(w, h, 0.90, 4, 4, 0.0, true);
auto a = mat(m);
return a;
}
struct WaveGRU {
int hidden_dim;
int repeat_factor;
mat m;
vec b;
vec z, r, hh, zrh;
vec fco1, fco2;
vec o1b, o2b;
vec t;
vec h;
vec logits;
mat o1, o2;
std::vector<vec> embed;
WaveGRU(int hidden_dim, int repeat_factor)
: hidden_dim(hidden_dim),
repeat_factor(repeat_factor),
b(3*hidden_dim),
t(3*hidden_dim),
zrh(3*hidden_dim),
z(hidden_dim),
r(hidden_dim),
hh(hidden_dim),
fco1(hidden_dim),
fco2(256),
h(hidden_dim),
o1b(hidden_dim),
o2b(256),
logits(256) {
m = create_mat(hidden_dim, 3*hidden_dim);
o1 = create_mat(hidden_dim, hidden_dim);
o2 = create_mat(hidden_dim, 256);
embed = std::vector<vec>();
for (int i = 0; i < 256; i++) {
embed.emplace_back(hidden_dim * 3);
embed[i].FillRandom();
}
}
void load_embed(fndarray embed_weights) {
auto a_embed = embed_weights.unchecked<2>();
for (int i = 0; i < 256; i++) {
for (int j = 0; j < hidden_dim * 3; j++) embed[i][j] = a_embed(i, j);
}
}
mat load_linear(vec& bias, fndarray w, indarray mask, fndarray b) {
auto w_ptr = static_cast<float*>(w.request().ptr);
auto mask_ptr = static_cast<int*>(mask.request().ptr);
auto rb = b.unchecked<1>();
// load bias, scale by 1/4
for (int i = 0; i < rb.shape(0); i++) bias[i] = rb(i) / 4;
// load weights
masked_mat mm(w.shape(0), w.shape(1), mask_ptr, w_ptr);
mat mmm(mm);
return mmm;
}
void load_weights(fndarray m, indarray m_mask, fndarray b,
fndarray o1, indarray o1_mask,
fndarray o1b, fndarray o2,
indarray o2_mask, fndarray o2b) {
this->m = load_linear(this->b, m, m_mask, b);
this->o1 = load_linear(this->o1b, o1, o1_mask, o1b);
this->o2 = load_linear(this->o2b, o2, o2_mask, o2b);
}
std::vector<int> inference(fndarray ft, float temperature) {
auto rft = ft.unchecked<2>();
int value = 127;
std::vector<int> signal(rft.shape(0) * repeat_factor);
h.FillZero();
for (int index = 0; index < signal.size(); index++) {
m.SpMM_bias(h, b, &zrh, false);
for (int i = 0; i < 3 * hidden_dim; i++) t[i] = embed[value][i] + rft(index / repeat_factor, i);
for (int i = 0; i < hidden_dim; i++) {
z[i] = zrh[i] + t[i];
r[i] = zrh[hidden_dim + i] + t[hidden_dim + i];
}
z.Sigmoid();
r.Sigmoid();
for (int i = 0; i < hidden_dim; i++) {
hh[i] = zrh[hidden_dim * 2 + i] * r[i] + t[hidden_dim * 2 + i];
}
hh.Tanh();
for (int i = 0; i < hidden_dim; i++) {
h[i] = (1. - z[i]) * h[i] + z[i] * hh[i];
}
o1.SpMM_bias(h, o1b, &fco1, true);
o2.SpMM_bias(fco1, o2b, &fco2, false);
// auto max_logit = fco2[0];
// for (int i = 1; i <= 255; ++i) {
// max_logit = max(max_logit, fco2[i]);
// }
// float total = 0.0;
// for (int i = 0; i <= 255; ++i) {
// logits[i] = csrblocksparse::fast_exp(fco2[i] - max_logit);
// total += logits[i];
// }
// for (int i = 0; i <= 255; ++i) {
// if (logits[i] < total / 1024.0) fco2[i] = -1e9;
// }
value = fco2.Sample(temperature);
signal[index] = value;
}
return signal;
}
};
PYBIND11_MODULE(wavegru_mod, m) {
py::class_<WaveGRU>(m, "WaveGRU")
.def(py::init<int, int>())
.def("load_embed", &WaveGRU::load_embed)
.def("load_weights", &WaveGRU::load_weights)
.def("inference", &WaveGRU::inference);
}