File size: 8,013 Bytes
21f3d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sparse_matmul/layers/utils.h"
#include <algorithm>
#include <cmath>
#include <random>
#include <type_traits>
#include <vector>
#include "absl/flags/flag.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "include/ghc/filesystem.hpp"
#include "sparse_matmul/layers/csr_blocksparse_matrix.h"
#include "sparse_matmul/layers/errno_mapping.h"
#include "sparse_matmul/layers/sparse_linear_layer.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/numerics/test_utils.h"
#include "sparse_matmul/numerics/type_utils.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"
namespace csrblocksparse {
namespace {
static constexpr char kTempOutputDir[] =
"third_party/lyra_codec/sparse_matmul/layers/testdata/";
static constexpr int kTestExponentBits = 5;
template <typename ComputeType>
class CsrBlockSparseMatrixUtilsTest : public testing::Test {
protected:
CsrBlockSparseMatrixUtilsTest()
: output_dir_((ghc::filesystem::path(testing::TempDir()) / kTempOutputDir)
.string()) {
if (std::is_floating_point<ComputeType>::value) {
tolerance_ = 1e-5;
} else if (csrblocksparse::IsCustomFloatType<ComputeType>::value) {
// Casting float --> bfloat truncates the least significant 16 bits from
// the mantissa, thus the larger the exponent bits the larger the rounding
// error.
// The exponent for max_val is 2^4, meaning the max rounding error
// for the weight input is ~ 0.124. The tolerance is 2x this because
// although the intermediate multiplications are accumulated in float,
// the output is cast to bfloat.
// Placeholder for internal diagram.
float max_val =
std::pow<float>(2, kTestExponentBits) -
std::pow<float>(2, -fixed16<kTestExponentBits>::kMantissaBits);
tolerance_ = 2 * (max_val - static_cast<float>(ComputeType(max_val)));
} else {
tolerance_ = std::pow<float>(2, -MantissaBitsOf<ComputeType>::value);
}
}
void SetUp() override {
std::error_code error_code;
ghc::filesystem::create_directories(output_dir_, error_code);
ASSERT_FALSE(error_code);
}
void TearDown() override {
std::error_code error_code;
ghc::filesystem::remove_all(output_dir_, error_code);
ASSERT_FALSE(error_code);
}
const std::string output_dir_;
float tolerance_;
};
void GenerateRandomWeightBiasMaskVectors(
int weight_vector_size, int bias_vector_size,
std::vector<float>* weight_vector, std::vector<float>* bias_vector,
std::vector<float>* mask_vector, std::vector<float>* masked_weight_vector) {
weight_vector->resize(weight_vector_size);
bias_vector->resize(bias_vector_size);
mask_vector->resize(weight_vector_size);
masked_weight_vector->resize(weight_vector_size);
// Fill Weight and Bias with random values between +/-[2^|kTestExponentBits| -
// 1] - 0.5 to prevent clipping in the fixed16 case when the weight and bias
// are added with all 1s in the exponent and mantissa.
const float max_abs_random_value =
std::pow<float>(2, kTestExponentBits - 1) - 0.5;
std::uniform_real_distribution<float> distribution(-max_abs_random_value,
max_abs_random_value);
std::default_random_engine generator(1337);
std::generate(weight_vector->begin(), weight_vector->end(),
[&]() { return distribution(generator); });
std::generate(bias_vector->begin(), bias_vector->end(),
[&]() { return distribution(generator); });
std::bernoulli_distribution mask_distribution(0.5);
std::generate(mask_vector->begin(), mask_vector->end(),
[&]() { return mask_distribution(generator) ? 1 : 0; });
// Construct the combined weight and mask vector.
std::transform(mask_vector->begin(), mask_vector->end(),
weight_vector->begin(), masked_weight_vector->begin(),
[&](float mask_value, float weight_value) {
return mask_value * weight_value;
});
}
using ComputeTypes =
testing::Types<float, csrblocksparse::fixed16<kTestExponentBits>,
csrblocksparse::bfloat16>;
TYPED_TEST_SUITE(CsrBlockSparseMatrixUtilsTest, ComputeTypes);
TYPED_TEST(CsrBlockSparseMatrixUtilsTest, LoadLayer) {
const int kWeightVectorSize = 16;
const int kBiasVectorSize = 4;
std::vector<float> ref_weight_vector;
std::vector<float> ref_bias_vector;
std::vector<float> ref_mask_vector;
std::vector<float> ref_masked_weight_vector;
GenerateRandomWeightBiasMaskVectors(
kWeightVectorSize, kBiasVectorSize, &ref_weight_vector, &ref_bias_vector,
&ref_mask_vector, &ref_masked_weight_vector);
// This fixed16_weights.raw vector should only be read by LoadGenericLayer
// when |TypeParam| is a fixed16_type.
std::vector<int16_t> fixed_weight_vector(ref_weight_vector.size());
std::transform(ref_weight_vector.begin(), ref_weight_vector.end(),
fixed_weight_vector.begin(), [](float weight) {
return fixed16<kTestExponentBits>(weight).raw_val();
});
ASSERT_TRUE(WriteArrayToFile(fixed_weight_vector, "fixed16_weights.raw",
this->output_dir_)
.ok());
ASSERT_TRUE(
WriteArrayToFile(ref_weight_vector, "weights.raw", this->output_dir_)
.ok());
ASSERT_TRUE(
WriteArrayToFile(ref_bias_vector, "bias.raw", this->output_dir_).ok());
ASSERT_TRUE(
WriteArrayToFile(ref_mask_vector, "mask.raw", this->output_dir_).ok());
// Read in the weights, mask, and bias to a layer.
SparseLinearLayer<TypeParam, TypeParam> actual_layer;
using DiskWeightType =
typename std::conditional<csrblocksparse::IsFixed16Type<TypeParam>::value,
csrblocksparse::fixed16_type, TypeParam>::type;
auto status = LoadGenericLayer<TypeParam, TypeParam, DiskWeightType>(
/*prefix=*/"", /*zipped=*/false, this->output_dir_,
/*default_bias=*/0.f, &actual_layer);
ASSERT_TRUE(status.ok());
// Multiply the read in layer with an identity matrix so we just get
// the weights added with bias.
std::vector<TypeParam> identity(kBiasVectorSize * kBiasVectorSize,
TypeParam(0.f));
for (int i = 0; i < identity.size(); i += kBiasVectorSize + 1) {
identity.at(i) = TypeParam(1.f);
}
FatCacheAlignedVector<TypeParam> masked_weights_plus_bias(kBiasVectorSize,
kBiasVectorSize);
actual_layer.SpMM_bias(
VectorView<TypeParam>(identity.data(), /*rows=*/kBiasVectorSize,
/*cols=*/kBiasVectorSize),
&masked_weights_plus_bias);
// |masked_weights_plus_bias| - bias = masked weights.
for (int col = 0; col < masked_weights_plus_bias.cols(); col++) {
MutableVectorView<TypeParam> col_data = masked_weights_plus_bias.slice(col);
for (int row = 0; row < masked_weights_plus_bias.rows(); row++) {
int flat_index = row * masked_weights_plus_bias.cols() + col;
EXPECT_NEAR(static_cast<float>(col_data[row]) - ref_bias_vector.at(row),
ref_masked_weight_vector.at(flat_index), this->tolerance_);
}
}
}
} // namespace
} // namespace csrblocksparse
|