File size: 35,003 Bytes
21f3d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_
#define LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_

#include <algorithm>
#include <cstdint>
#include <iostream>
#include <memory>
#include <tuple>
#include <vector>

#include "glog/logging.h"
// IWYU pragma: begin_exports
#include "sparse_matmul/compute/kernels_generic.h"
#include "sparse_matmul/compute/matmul.h"
#include "sparse_matmul/compute/thread_bounds.h"
#include "sparse_matmul/layers/masked_sparse_matrix.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/os/coop_threads.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"
// IWYU pragma: end_exports
#include "absl/memory/memory.h"

namespace csrblocksparse {
// CsrBlockSparseMatrix stores a modified block compressed sparse row
// representation of a sparse matrix.  The ordering of the weights is modified
// in the 16x1 and 1x1 cases so that a certain number (4 and 8 respectively)
// of columns of weights are stored contiguously before moving on to the next
// row.  The 4x4 case stores each block contiguously.
//
// Currently it is constructed from a MaskedSparseMatrix which usees a dense
// binary mask representation.  The construction generates the compressed
// representation.  Further iterations will support a direct serialization
// of the compressed representation.
//
// MaskedSparseMatrix masked_matrix(rows, cols, existing_mask, existing_values)
// CsrBlockSparseMatrix matrix(masked_matrix)
//
// matrix.SpMV_bias(rhs, bias, &out);
//
// This class is thread compatible.
template <typename WeightType, typename RhsType, typename DeltaType = int16_t>
class CsrBlockSparseMatrix {
 public:
  CsrBlockSparseMatrix() {}

  // Reference used to indicate that this is an input and not an output.
  CsrBlockSparseMatrix(const uint8_t* const& buffer, const std::size_t& len) {
    ReadFromFlatBuffer(buffer, len);
    ComputeRHSIndices();
  }

  template <typename InputType>
  CsrBlockSparseMatrix(const MaskedSparseMatrix<InputType>& masked_matrix) {
    sparsity_ = masked_matrix.sparsity();
    rows_ = masked_matrix.rows();
    cols_ = masked_matrix.cols();

    DetermineBlockSize(masked_matrix);

    if (block_width_ == 1 && block_height_ == 1)
      col_multiple_ = 8;
    else
      col_multiple_ = 1;

    std::vector<InputType> weights(masked_matrix.values().begin(),
                                   masked_matrix.values().end());

    reduced_rows_ = (rows_ + block_height_ - 1) / block_height_;
    rows_ = reduced_rows_ * block_height_;
    reduced_cols_ = cols_ / block_width_;

    // Calculate the reduced CSR representation of the matrix.
    std::vector<int> reduced_mask(reduced_rows_ * reduced_cols_);
    std::vector<int> row_offsets = {0};
    int nnz = 0;
    const auto& mask = masked_matrix.mask();
    for (int r = 0; r < reduced_rows_; ++r) {
      for (int c = 0; c < reduced_cols_; ++c) {
        int mask_val = mask[r * block_height_ * cols_ + c * block_width_];
        reduced_mask[r * reduced_cols_ + c] = mask_val;
        nnz += mask_val;
      }
      row_offsets.push_back(nnz);
    }

    // Make sure the reduced representation has the correct number of columns.
    MakeColumnsMultiple(row_offsets, &reduced_mask, &weights);

    std::vector<int> col_indices;
    std::vector<WeightType> weights_csr;
    std::vector<int> nnz_per_row;
    MaskAndWeightsToCsr(reduced_mask, weights, &nnz_per_row, &col_indices,
                        &weights_csr);

    // Generate column deltas from |col_indices|.
    std::vector<DeltaType> col_deltas;
    for (int i = 0; i < col_indices.size(); ++i) {
      // |col_indices| are used to index the RHS vector which is always float.
      int64_t diff = sizeof(RhsType);
      if (i == 0)
        diff *= block_width_ * (col_indices[i]);
      else
        diff *= block_width_ * (col_indices[i] - col_indices[i - 1]);

      CHECK(diff < std::numeric_limits<DeltaType>::max())
          << "delta between column indices in bytes " << diff
          << " exceeded the maximum size of the DeltaType "
          << std::numeric_limits<DeltaType>::max();
      col_deltas.push_back(static_cast<DeltaType>(diff));
    }

    // Because of pre-fetching we need some extra values at the end.
    col_deltas.insert(col_deltas.end(), std::max(2, col_multiple_ + 1), 0);
    nnz_per_row.insert(nnz_per_row.end(), 2, nnz_per_row.back());

    weights_ = CacheAlignedVector<WeightType>(weights_csr);
    col_deltas_ = CacheAlignedVector<DeltaType>(col_deltas);
    nnz_per_row_ = CacheAlignedVector<int>(nnz_per_row);
    ComputeRHSIndices();

    num_threads_ = 0;
    PrepareForThreads(1);
  }

  // Constructor makes a matrix from the given weights, deltas and nnz, taking
  // the other parameters from |src_matrix|. |cols| is the number of raw columns
  // (NOT blocks) of the new matrix.
  CsrBlockSparseMatrix(
      const CsrBlockSparseMatrix<WeightType, RhsType, DeltaType>& src_matrix,
      const std::vector<WeightType>& new_weights,
      const std::vector<DeltaType>& new_deltas, const std::vector<int>& new_nnz,
      int cols) {
    num_threads_ = 0;
    col_multiple_ = src_matrix.col_multiple_;
    block_width_ = src_matrix.block_width_;
    block_height_ = src_matrix.block_height_;
    reduced_rows_ = new_nnz.size();
    rows_ = reduced_rows_ * block_height_;
    cols_ = cols;
    reduced_cols_ = cols_ / block_width_;
    weights_ = CacheAlignedVector<WeightType>(new_weights);
    col_deltas_ = CacheAlignedVector<DeltaType>(new_deltas);
    nnz_per_row_ = CacheAlignedVector<int>(new_nnz);
    sparsity_ = 1.0f - static_cast<float>(new_weights.size()) / (rows_ * cols_);
    ComputeRHSIndices();
    name_ = src_matrix.name_;
    PrepareForThreads(1);
  }

  // Factory method takes a column slice out of *this and returns a sparse
  // matrix that takes as inputs [|start_col|, |end_col|) of *this, and
  // returns the same number of outputs, but only a partial result.
  // If |keep_rhs_size|, then the new matrix takes the same rhs as the current
  // matrix, but uses a subset of it, instead of expecting just the reduced rhs.
  // If |start_col| > |end_col|, then we slice out the complement of the defined
  // interval, ie [0, |end_col|) + [|start_col|, current end).
  // NOTE That |start_col| and |end_col| are in raw column coordinates, NOT
  // block units.
  CsrBlockSparseMatrix SplitByColumn(int start_col, int end_col,
                                     bool keep_rhs_size = false) const {
    int weight_index = 0;
    int delta_index = 0;
    std::vector<DeltaType> new_deltas;
    std::vector<WeightType> new_weights;
    std::vector<int> new_nnz(reduced_rows_);
    int col = 0;
    int prev_col = keep_rhs_size ? 0 : start_col;
    for (int r = 0; r < reduced_rows_; ++r) {
      int reduced_col_count = nnz_per_row_[r];
      for (int c = 0; c < reduced_col_count; ++c, ++delta_index) {
        col += col_deltas_[delta_index] / sizeof(RhsType);
        if ((start_col < end_col && start_col <= col && col < end_col) ||
            (start_col > end_col && (col < end_col || col >= start_col))) {
          ++new_nnz[r];
          new_deltas.push_back((col - prev_col) * sizeof(RhsType));
          prev_col = col;
          for (int i = 0; i < block_width_ * block_height_;
               ++i, ++weight_index) {
            new_weights.push_back(weights_[weight_index]);
          }
        } else {
          weight_index += block_width_ * block_height_;
        }
      }
    }
    int new_cols = keep_rhs_size ? cols_ : end_col - start_col;
    return CsrBlockSparseMatrix(*this, new_weights, new_deltas, new_nnz,
                                new_cols);
  }

  // Factory method takes a row slice out of *this and returns a sparse
  // matrix that takes the sampe inputs as *this, and returns the outputs for
  // the range [|start_row|, |end_row|).
  // NOTE That |start_row| and |end_row| are in raw column coordinates, NOT
  // block units.
  CsrBlockSparseMatrix SplitByRow(int start_row, int end_row) const {
    int start_reduced = start_row / block_height_;
    int end_reduced = end_row / block_height_;
    std::vector<int> new_nnz(nnz_per_row_.data() + start_reduced,
                             nnz_per_row_.data() + end_reduced);
    int weight_start = 0;
    for (int r = 0; r < start_reduced; ++r) {
      weight_start += nnz_per_row_[r];
    }
    int weight_end = weight_start;
    for (int r = start_reduced; r < end_reduced; ++r) {
      weight_end += nnz_per_row_[r];
    }
    int delta_start = 0;
    for (int i = 0; i < weight_start; ++i) {
      delta_start += col_deltas_[i];
    }
    std::vector<DeltaType> new_deltas(col_deltas_.data() + weight_start,
                                      col_deltas_.data() + weight_end);
    new_deltas[0] += delta_start;
    int block_size = block_height_ * block_width_;
    std::vector<WeightType> new_weights(
        weights_.data() + weight_start * block_size,
        weights_.data() + weight_end * block_size);
    return CsrBlockSparseMatrix(*this, new_weights, new_deltas, new_nnz, cols_);
  }

  // Combines adjacent row blocks, doubling the block height.
  // This necessarily involves adding zero weights where the blocks don't align
  // across adjacent pairs of rows, so use with caution, as the resulting matrix
  // is most likely to run slower if very sparse to begin with.
  // In the few cases where the blocks do mostly align, the resulting matmul
  // could be much faster, as the number of reads of the rhs will be halved.
  void DoubleBlockHeight() {
    int new_rows = reduced_rows_ / 2;
    std::vector<int> new_nnz(new_rows);
    std::vector<DeltaType> new_rhs_indices;
    std::vector<WeightType> new_weights;
    int rhs_index1 = 0;
    int rhs_index2 = 0;
    int block_size = block_height_ * block_width_;
    for (int r = 0; r < new_rows; ++r) {
      int start_nnz = new_rhs_indices.size();
      rhs_index2 += nnz_per_row_[r * 2];
      int end1 = rhs_index1 + nnz_per_row_[r * 2];
      int end2 = rhs_index2 + nnz_per_row_[r * 2 + 1];
      // Run over a pair of rows with 2 iterators, combining blocks as we go, or
      // padding with zeros where the block positions don't match.
      while (rhs_index1 < end1 || rhs_index2 < end2) {
        int col1 = rhs_index1 < end1 ? rhs_indices_[rhs_index1] : reduced_cols_;
        int col2 = rhs_index2 < end2 ? rhs_indices_[rhs_index2] : reduced_cols_;
        if (col1 < col2) {
          // Need zero weights for row2 to pad out weights block.
          new_rhs_indices.push_back(col1);
          new_weights.insert(new_weights.end(),
                             weights_.data() + rhs_index1 * block_size,
                             weights_.data() + (rhs_index1 + 1) * block_size);
          new_weights.insert(new_weights.end(), block_size,
                             static_cast<WeightType>(0.0f));
          ++rhs_index1;
        } else if (col1 > col2) {
          // Need zero weights for row1 to pad out weights block.
          new_rhs_indices.push_back(col2);
          new_weights.insert(new_weights.end(), block_size,
                             static_cast<WeightType>(0.0f));
          new_weights.insert(new_weights.end(),
                             weights_.data() + rhs_index2 * block_size,
                             weights_.data() + (rhs_index2 + 1) * block_size);
          ++rhs_index2;
        } else {
          // Combine weights for both row1 and row2.
          new_rhs_indices.push_back(col1);
          new_weights.insert(new_weights.end(),
                             weights_.data() + rhs_index1 * block_size,
                             weights_.data() + (rhs_index1 + 1) * block_size);
          new_weights.insert(new_weights.end(),
                             weights_.data() + rhs_index2 * block_size,
                             weights_.data() + (rhs_index2 + 1) * block_size);
          ++rhs_index1;
          ++rhs_index2;
        }
      }
      rhs_index1 = rhs_index2;
      new_nnz[r] = new_rhs_indices.size() - start_nnz;
    }
    block_height_ *= 2;
    reduced_rows_ /= 2;
    weights_ = CacheAlignedVector<WeightType>(new_weights);
    rhs_indices_ = CacheAlignedVector<DeltaType>(new_rhs_indices);
    nnz_per_row_ = CacheAlignedVector<int>(new_nnz);
    sparsity_ = 1.0f - static_cast<float>(new_weights.size()) / (rows_ * cols_);
    ComputeColDeltas();
    if (num_threads_ > 0) {
      int num_threads = num_threads_;
      num_threads_ = 0;
      PrepareForThreads(num_threads);
    }
  }

  // Allocates memory and fills buffer.
  // Caller is responsible for the memory de-allocation.
  // TODO(b/189958858): Both Read and Write need to eventually handle the
  // different possible HalfType and DeltaType values, but punting for now as
  // there is only one supported combination.
  std::size_t WriteToFlatBuffer(std::string* csr_flatbuffer) {
    std::size_t bytes = 0;
    bytes += FixedParameterSize();
    bytes += weights_.size() * sizeof(WeightType);
    bytes += col_deltas_.size() * sizeof(DeltaType);
    bytes += nnz_per_row_.size() * sizeof(int);

    uint8_t* bytes_ptr_ptr =
        reinterpret_cast<uint8_t*>(CHECK_NOTNULL(malloc(bytes)));

    int* int_bytes_ptr = reinterpret_cast<int*>(bytes_ptr_ptr);

    *int_bytes_ptr++ = rows_;
    *int_bytes_ptr++ = cols_;
    *int_bytes_ptr++ = reduced_rows_;
    *int_bytes_ptr++ = reduced_cols_;
    *int_bytes_ptr++ = block_width_;
    *int_bytes_ptr++ = block_height_;
    *int_bytes_ptr++ = col_multiple_;
    *int_bytes_ptr++ = num_threads_;
    *int_bytes_ptr++ = weights_.size();
    *int_bytes_ptr++ = col_deltas_.size();
    *int_bytes_ptr++ = nnz_per_row_.size();

    float* float_bytes_ptr = reinterpret_cast<float*>(int_bytes_ptr);
    *float_bytes_ptr++ = sparsity_;

    uint8_t* bytes_ptr = reinterpret_cast<uint8_t*>(float_bytes_ptr);

    memcpy(bytes_ptr, weights_.data(), weights_.size() * sizeof(WeightType));
    bytes_ptr += weights_.size() * sizeof(WeightType);

    memcpy(bytes_ptr, col_deltas_.data(),
           col_deltas_.size() * sizeof(DeltaType));
    bytes_ptr += col_deltas_.size() * sizeof(DeltaType);

    memcpy(bytes_ptr, nnz_per_row_.data(), nnz_per_row_.size() * sizeof(int));
    bytes_ptr += nnz_per_row_.size() * sizeof(int);

    csr_flatbuffer->resize(bytes);
    csr_flatbuffer->assign(reinterpret_cast<char*>(bytes_ptr_ptr), bytes);
    free(bytes_ptr_ptr);

    return bytes;
  }

  void ReadFromFlatBuffer(const uint8_t* const& bytes, const std::size_t& len) {
    CHECK_GE(len, FixedParameterSize());

    const int* int_bytes_ptr = reinterpret_cast<const int*>(bytes);
    rows_ = *int_bytes_ptr++;
    cols_ = *int_bytes_ptr++;
    reduced_rows_ = *int_bytes_ptr++;
    reduced_cols_ = *int_bytes_ptr++;
    block_width_ = *int_bytes_ptr++;
    block_height_ = *int_bytes_ptr++;
    col_multiple_ = *int_bytes_ptr++;
    int num_threads = *int_bytes_ptr++;
    int32_t weights_size = *int_bytes_ptr++;
    int32_t col_deltas_size = *int_bytes_ptr++;
    int32_t nnz_per_row_size = *int_bytes_ptr++;

    // Make sure negative sizes don't mess things up.
    weights_size = std::max(0, weights_size);
    col_deltas_size = std::max(0, col_deltas_size);
    nnz_per_row_size = std::max(0, nnz_per_row_size);

    const float* float_bytes_ptr =
        reinterpret_cast<const float*>(int_bytes_ptr);
    sparsity_ = *float_bytes_ptr++;

    std::size_t total_bytes =
        FixedParameterSize() + weights_size * sizeof(WeightType) +
        col_deltas_size * sizeof(DeltaType) + nnz_per_row_size * sizeof(int);

    CHECK_EQ(total_bytes, len)
        << "total bytes: " << total_bytes << ", actual len given: " << len;

    const uint8_t* bytes_ptr =
        reinterpret_cast<const uint8_t*>(float_bytes_ptr);
    std::vector<WeightType> weights_raw(weights_size);
    memcpy(weights_raw.data(), bytes_ptr, weights_size * sizeof(WeightType));
    weights_ = CacheAlignedVector<WeightType>(weights_raw);
    bytes_ptr += weights_size * sizeof(WeightType);

    std::vector<DeltaType> deltas_raw(col_deltas_size);
    memcpy(deltas_raw.data(), bytes_ptr, col_deltas_size * sizeof(DeltaType));
    col_deltas_ = CacheAlignedVector<DeltaType>(deltas_raw);
    bytes_ptr += col_deltas_size * sizeof(DeltaType);

    std::vector<int> nnz_raw(nnz_per_row_size);
    memcpy(nnz_raw.data(), bytes_ptr, nnz_per_row_size * sizeof(int));
    nnz_per_row_ = CacheAlignedVector<int>(nnz_raw);
    num_threads_ = 0;
    PrepareForThreads(num_threads);
  }

  // Multiply a Sparse matrix by a possibly dense matrix.  Often the matrix is
  // a vector with a small number of columns, hence the term "fat vector".
  // 1x1 and 4x4 have specializations for output columns (ie fatness) > 5,
  // and often achieve twice as many GFlops when multiplying a right hand side
  // that has 5 or more columns.  (Best is a multiple of 5).
  // 16x1 doesn't have enough registers and just loops over the width 1 kernel.
  //
  // |rhs| and |out| are COLUMN MAJOR.

  // Fast Tuples WeightType, BiasType, RhsType, OutType are:
  // (float, float, float, float)
  // (bfloat16, float, float, float)
  // and only on ARM64.  All other cases use a slow generic implementation.
  template <typename RhsClass, typename BiasClass, typename OutClass,
            typename BiasType = typename BiasClass::value_type,
            typename OutType = typename OutClass::value_type>
  void SpMM_bias(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
                 bool relu = false, int tid = 0,
                 SpinBarrier* barrier = nullptr) const {
    static_assert(std::is_same<typename RhsClass::value_type, RhsType>::value,
                  "Rhs types must match");
    CHECK_LT(tid, num_threads_);
    CHECK_EQ(rhs.cols(), out->cols());
    CHECK_EQ(rhs.rows(), cols_);
    CHECK_GE(out->rows(), rows_);
    int cols_to_go = out->cols();
    int rhs_index = *thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid);
    const RhsType* rhs_ptr = rhs.data() + rhs_index * block_height_;
    OutType* out_ptr = thread_bounds_.OffsetOutput(out->data(), tid);
    const WeightType* weights_ptr =
        thread_bounds_.OffsetWeights(weights_.data(), tid);
    const DeltaType* delta_ptr =
        thread_bounds_.OffsetRhsIndices(col_deltas_.data(), tid);
    int offset = *delta_ptr / sizeof(RhsType);
    rhs_ptr -= offset;
    const int* nnz_ptr = nnz_per_row_.data() + thread_bounds_.StartRow(tid);
    int assigned_rows =
        thread_bounds_.StartRow(tid + 1) - thread_bounds_.StartRow(tid);
    const BiasType* bias_ptr = thread_bounds_.OffsetBias(bias.data(), tid);

    while (cols_to_go > 0) {
      if (block_width_ == 4 && block_height_ == 4) {
        if (cols_to_go >= 5) {
          detail::SpMM5_4x4<WeightType, RhsType, OutType>(
              weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
              assigned_rows, out->col_stride(), rhs.col_stride(), relu);
        } else {
          detail::SpMV_4x4<WeightType, RhsType, OutType>(
              weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
              assigned_rows, out->col_stride(), rhs.col_stride(), relu);
        }
      } else {
        if (cols_to_go >= 5) {
          detail::SpMM5_1x1<WeightType, RhsType, OutType>(
              weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
              assigned_rows, out->col_stride(), rhs.col_stride(), relu);
        } else {
          detail::SpMV_1x1<WeightType, RhsType, OutType>(
              weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
              assigned_rows, out->col_stride(), rhs.col_stride(), relu);
        }
      }

      if (cols_to_go >= 5) {
        cols_to_go -= 5;
        rhs_ptr += rhs.col_stride() * 5;
        out_ptr += out->col_stride() * 5;
      } else {
        cols_to_go--;
        rhs_ptr += rhs.col_stride();
        out_ptr += out->col_stride();
      }
      if (barrier) barrier->barrier();
    }
  }
  template <typename MVRhsType, typename MVBiasType, typename OutType>
  void MatVec(const MVRhsType* rhs, const MVBiasType* bias, bool relu, int tid,
              int replicas, int output_stride, OutType* output) {
    CHECK_LT(tid, num_threads_);
    CHECK_EQ(block_width_, 4) << "Block width must be 4!";
    if (block_height_ == 8) {
      matmul_.MatVec8x4(
          thread_bounds_.OffsetWeights(weights_.cast_data(), tid), rhs,
          thread_bounds_.OffsetBias(bias, tid), nnz_per_row_.data(),
          thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid),
          thread_bounds_.StartRow(tid), thread_bounds_.StartRow(tid + 1), relu,
          replicas, output_stride, thread_bounds_.OffsetOutput(output, tid));
    } else {
      CHECK_EQ(block_height_, 4) << "Block height must be 4 or 8!";
      matmul_.MatVec4x4(
          thread_bounds_.OffsetWeights(weights_.cast_data(), tid), rhs,
          thread_bounds_.OffsetBias(bias, tid), nnz_per_row_.data(),
          thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid),
          thread_bounds_.StartRow(tid), thread_bounds_.StartRow(tid + 1), relu,
          replicas, output_stride, thread_bounds_.OffsetOutput(output, tid));
    }
  }

  int rows() const { return rows_; }
  int cols() const { return cols_; }
  int block_height() const { return block_height_; }
  int block_width() const { return block_width_; }
  float sparsity() const { return sparsity_; }
  int num_threads() const { return num_threads_; }
  const ThreadBounds& thread_bounds() const { return thread_bounds_; }
  const CacheAlignedVector<DeltaType>& rhs_indices() const {
    return rhs_indices_;
  }
  const std::string& name() const { return name_; }
  void set_name(const std::string& name) { name_ = name; }
  const std::vector<int>& split_points() const {
    return thread_bounds_.row_starts();
  }

  std::size_t bytes() const {
    return weights_.size() * sizeof(WeightType) +
           col_deltas_.size() * sizeof(DeltaType) +
           nnz_per_row_.size() * sizeof(int);
  }

  // Multiplies a sparse matrix by a possibly dense matrix, as SpMM_bias above,
  // and then samples from the output (softmax distribution) layer.
  template <typename RhsClass, typename BiasClass, typename OutClass,
            typename BiasType = typename BiasClass::value_type,
            typename OutType = typename OutClass::value_type>
  typename std::enable_if<!IsFixed32Type<OutType>::value, int>::type
  SpMM_bias_Sample(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
                   float temperature, int tid, SpinBarrier* barrier,
                   std::minstd_rand* gen,
                   CacheAlignedVector<float>* scratch) const {
    SpMM_bias(rhs, bias, out, /*relu=*/false, tid, barrier);
    return out->Sample(temperature, gen, scratch);
  }
  // Fixed32 version.
  template <typename RhsClass, typename BiasClass, typename OutClass,
            typename BiasType = typename BiasClass::value_type,
            typename OutType = typename OutClass::value_type>
  typename std::enable_if<IsFixed32Type<OutType>::value, int>::type
  SpMM_bias_Sample(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
                   float temperature, int tid, SpinBarrier* barrier,
                   std::minstd_rand* gen,
                   CacheAlignedVector<float>* scratch) const {
    // We don't pass the barrier on, as we have more work to do.
    SpMM_bias(rhs, bias, out, /*relu=*/false, tid);
    return out->ReducingSample(gen, scratch, tid, temperature, barrier);
  }

  void Print() const {
    std::cout << "Weights\n";
    weights_.Print();
    std::cout << std::endl;
    std::cout << "Deltas\n";
    col_deltas_.Print();
    std::cout << std::endl;
    std::cout << "nnz\n";
    nnz_per_row_.Print();
    std::cout << std::endl;
  }

  // Split the computation amongst threads by rows based on the number of
  // non zeros, with the addition of a constant to account for the work of the
  // bias and the horizontal add at the end, and also guarantees that each
  // thread writes only whole cache lines, based on the size of OutType.
  // The |cache_line_size| arg is used only for testing. Normally it is provided
  // through the architecture #defines.
  // Each thread gets a contiguous row range (|split_points|).
  // Thread t does rows [ split_points[t], split_points[t + 1] )
  // Each thread also needs to know how many non zeros were before it to skip
  // (|nnz_to_skip|).  And finally it also needs to know what the offset into
  // the rhs vector would have been at the split point (|rhs_to_skip|).
  //
  // Some tricky corner cases where the number of non-zeros doesn't split
  // nicely amongst the number of requested threads are not handled and default
  // to one thread; these cases are only going to happen in tests and not in
  // the matrices that correspond in real models.
  //
  // Returns the maximum number of threads that can be used; <= |num_threads|.
  template <typename OutType = int32_t>
  int PrepareForThreads(int num_threads, int cache_line_size = -1) {
    CHECK_GT(num_threads, 0);
    // we've already prepared for this number of threads, nothing to do
    if (num_threads == num_threads_) return num_threads_;

    num_threads_ = num_threads;
    thread_bounds_.PrepareForThreads(
        block_width_, block_height_, num_threads_,
        ReducedRowsPerCacheLine<OutType>(cache_line_size), reduced_rows_,
        nnz_per_row_.data());
    return num_threads_;
  }

  // Computes and stores the |rhs_indices_| from the |col_deltas_|.
  void ComputeRHSIndices() {
    std::vector<int> cumulative_deltas = CumulativeColDeltas();
    std::vector<DeltaType> rhs_indices(cumulative_deltas.size() +
                                       reduced_rows_);
    int total_indices = 0;
    int delta_index = 0;
    for (int r = 0; r < reduced_rows_; ++r) {
      for (int n = 0; n < nnz_per_row_[r]; ++n, ++delta_index) {
        rhs_indices[total_indices++] =
            cumulative_deltas[delta_index] / block_width_;
      }
    }
    rhs_indices_ = CacheAlignedVector<DeltaType>(rhs_indices);
  }

  // Computes and stores the |col_deltas_| from the |rhs_indices_|.
  void ComputeColDeltas() {
    std::vector<int> col_deltas(rhs_indices_.size());
    int prev_index = 0;
    for (int i = 0; i < rhs_indices_.size(); ++i) {
      int offset = rhs_indices_[i] - prev_index;
      prev_index = rhs_indices_[i];
      col_deltas[i] = offset * block_width_ * sizeof(RhsType);
    }
    col_deltas_ = CacheAlignedVector<DeltaType>(col_deltas);
  }

  // Computes and returns the inclusive prefix sum of the deltas, ie absolute
  // positions.
  std::vector<int> CumulativeColDeltas() const {
    std::vector<int> cum_col_deltas(col_deltas_.size());
    for (int i = 0; i < col_deltas_.size(); ++i) {
      cum_col_deltas[i] = col_deltas_[i] / sizeof(RhsType);
      if (i > 0) cum_col_deltas[i] += cum_col_deltas[i - 1];
    }
    return cum_col_deltas;
  }

 private:
  constexpr std::size_t FixedParameterSize() const {
    return sizeof(int)      // rows
           + sizeof(int)    // cols
           + sizeof(int)    // reduced_rows
           + sizeof(int)    // reduced_cols
           + sizeof(int)    // block_width
           + sizeof(int)    // block_height
           + sizeof(float)  // sparsity
           + sizeof(int)    // col_multiple
           + sizeof(int)    // num_threads_
           + sizeof(int)    // weights_.size()
           + sizeof(int)    // col_deltas_.size()
           + sizeof(int);   // nnz_per_row_.size()
  }
  // Possible block sizes are only those that are supported by the computation
  // default is 1x1, other options are 4x4 and 16x1.
  template <typename InputType>
  void DetermineBlockSize(const MaskedSparseMatrix<InputType>& masked_matrix) {
    const std::vector<std::pair<int, int>> kPreferredOrder = {{4, 4}};
    int rows = masked_matrix.rows();
    int cols = masked_matrix.cols();

    for (const auto& block_size : kPreferredOrder) {
      int block_height, block_width;
      std::tie(block_height, block_width) = block_size;
      if (cols % block_width != 0) continue;

      int reduced_rows = (rows + block_height - 1) / block_height;
      int reduced_cols = cols / block_width;

      // For each possible block, confirm that it is either all 0s or all 1s.
      bool all_same = true;
      const auto& mask = masked_matrix.mask();
      for (int r = 0; r < reduced_rows; ++r) {
        for (int c = 0; c < reduced_cols; ++c) {
          int val = mask[r * block_height * cols + c * block_width];
          for (int i = 0; i < block_height; ++i) {
            for (int j = 0; j < block_width; ++j) {
              int index = (r * block_height + i) * cols + c * block_width + j;
              if (index < masked_matrix.mask().size()) {
                all_same &= (masked_matrix.mask()[index] == val);
              }
            }
          }
        }
      }

      // If this block configuration is possible, accept it.
      if (all_same) {
        block_height_ = block_height;
        block_width_ = block_width;
        return;
      }
    }

    // No large blocks were found, default to 1x1.
    block_height_ = 1;
    block_width_ = 1;
  }

  // CSR descriptors are for the reduced matrix, weights is the full matrix.
  template <typename InputType>
  void MakeColumnsMultiple(const std::vector<int>& row_offsets,
                           std::vector<int>* reduced_mask,
                           std::vector<InputType>* weights) {
    if (col_multiple_ > 0) {
      // Make sure each row has a number of columns that is a multiple of
      // |col_multiple|.
      for (int r = 1; r < row_offsets.size(); ++r) {
        int num_row = row_offsets[r] - row_offsets[r - 1];
        int num_needed = col_multiple_ - num_row % col_multiple_;
        if (num_needed < col_multiple_) {
          // Find gaps in the columns where we can insert a column of 0 weights.
          int num_added = 0;
          for (int c = 0; c < reduced_cols_; ++c) {
            if ((*reduced_mask)[(r - 1) * reduced_cols_ + c] == 0) {
              (*reduced_mask)[(r - 1) * reduced_cols_ + c] = 1;

              // Zero out the weights that correspond to this block.
              for (int i = 0; i < block_height_; ++i) {
                for (int j = 0; j < block_width_; ++j) {
                  (*weights)[((r - 1) * block_height_ + i) * cols_ +
                             block_width_ * c + j] = InputType(0.f);
                }
              }
              num_added++;
            }

            if (num_added == num_needed) break;
          }
        }
      }
    }
  }

  // Given the final dense mask and weights, convert to the compressed
  // block CSR representation.
  template <typename InputType>
  void MaskAndWeightsToCsr(const std::vector<int>& mask,
                           const std::vector<InputType>& weights,
                           std::vector<int>* nnz_per_row,
                           std::vector<int>* col_indices,
                           std::vector<WeightType>* weights_csr) {
    std::vector<int> row_offsets = {0};
    int nnz = 0;
    // Standard CSR format.
    if (block_width_ == 1 && block_height_ == 1) {
      for (int r = 0; r < rows_; ++r) {
        for (int c = 0; c < cols_; ++c) {
          if (mask[r * cols_ + c] == 1) {
            nnz++;
            col_indices->push_back(c);
            weights_csr->push_back(WeightType(weights[r * cols_ + c]));
          }
        }
        row_offsets.push_back(nnz);
      }
    } else if (block_width_ == 4 && block_height_ == 4) {
      // Weights are stored contiguously for each block in this case.
      for (int r = 0; r < reduced_rows_; ++r) {
        for (int c = 0; c < reduced_cols_; ++c) {
          if (mask[r * reduced_cols_ + c] == 1) {
            col_indices->push_back(c);
            nnz++;
            for (int i = 0; i < block_height_; ++i) {
              for (int j = 0; j < block_width_; ++j) {
                int row_index = (block_height_ * r + i) * cols_;
                int w_index = row_index + block_width_ * c + j;
                WeightType weight = w_index < weights.size()
                                        ? WeightType(weights[w_index])
                                        : WeightType(0.0f);
                weights_csr->push_back(weight);
              }
            }
          }
        }
        row_offsets.push_back(nnz);
      }
    }
    for (int i = 1; i < row_offsets.size(); ++i)
      nnz_per_row->push_back(row_offsets[i] - row_offsets[i - 1]);
  }

  // Returns the number of block rows per cache line. This is the minimum unit
  // into which the calculation is broken for threads.
  template <typename OutType>
  int ReducedRowsPerCacheLine(int override_cache_line_size = -1) const {
    int line_size = kCacheLineSize;
    if (override_cache_line_size >= 1) line_size = override_cache_line_size;
    return std::max<int>(line_size / (block_height_ * sizeof(OutType)), 1);
  }

  int col_multiple_;
  int rows_;
  int cols_;
  int reduced_rows_;
  int reduced_cols_;
  float sparsity_;
  int block_width_;
  int block_height_;
  int num_threads_;
  std::string name_;

  CacheAlignedVector<WeightType> weights_;
  CacheAlignedVector<DeltaType> col_deltas_;
  CacheAlignedVector<int> nnz_per_row_;
  // |thread_bounds_| and |rhs_indices_| don't need to be serialized as they are
  // always recalculated from serialized data.
  CacheAlignedVector<DeltaType> rhs_indices_;
  Matmul<WeightType, RhsType> matmul_;
  ThreadBounds thread_bounds_;
  static constexpr int kCacheLineSize = 64;
};

// Converts a sparse matrix represented with (|mask|, |weights|, |size|) into
// the CSR format, and returns that as a serialized string.
template <typename MaskType>
std::string ConvertDenseToSparseRepresentation_Int16Deltas(
    const std::vector<MaskType>& mask, const std::vector<float>& weights,
    const int rows, const int cols) {
  MaskedSparseMatrix<float> masked_weights(rows, cols, mask.data(),
                                           weights.data());
  CsrBlockSparseMatrix<csrblocksparse::bfloat16, float, int16_t>
      sparse_masked_weights(masked_weights);
  std::string buffer;
  sparse_masked_weights.WriteToFlatBuffer(&buffer);
  return buffer;
}

}  // namespace csrblocksparse
#endif  // LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_