# Copyright (c) 2024 NVIDIA CORPORATION. # Licensed under the MIT license. import spaces import gradio as gr import pandas as pd import torch import os from meldataset import get_mel_spectrogram, MAX_WAV_VALUE from bigvgan import BigVGAN import librosa import numpy as np from utils import plot_spectrogram import PIL if torch.cuda.is_available(): device = torch.device("cuda") torch.backends.cudnn.benchmark = False print(f"using GPU") else: device = torch.device("cpu") print(f"using CPU") def inference_gradio(input, model_choice): # input is audio waveform in [T, channel] sr, audio = input # unpack input to sampling rate and audio itself audio = np.transpose(audio) # transpose to [channel, T] for librosa audio = audio / MAX_WAV_VALUE # convert int16 to float range used by BigVGAN model = dict_model[model_choice] if sr != model.h.sampling_rate: # convert audio to model's sampling rate audio = librosa.resample(audio, orig_sr=sr, target_sr=model.h.sampling_rate) if len(audio.shape) == 2: # stereo audio = librosa.to_mono(audio) # convert to mono if stereo audio = librosa.util.normalize(audio) * 0.95 output, spec_gen = inference_model( audio, model ) # output is generated audio in ndarray, int16 spec_plot_gen = plot_spectrogram(spec_gen) output_audio = (model.h.sampling_rate, output) # tuple for gr.Audio output buffer = spec_plot_gen.canvas.buffer_rgba() output_image = PIL.Image.frombuffer( "RGBA", spec_plot_gen.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1 ) return output_audio, output_image @spaces.GPU(duration=120) def inference_model(audio_input, model): # load model to device model.to(device) with torch.inference_mode(): wav = torch.FloatTensor(audio_input) # compute mel spectrogram from the ground truth audio spec_gt = get_mel_spectrogram(wav.unsqueeze(0), model.h).to(device) y_g_hat = model(spec_gt) audio_gen = y_g_hat.squeeze().cpu() spec_gen = get_mel_spectrogram(audio_gen.unsqueeze(0), model.h) audio_gen = audio_gen.numpy() # [T], float [-1, 1] audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16") # [T], int16 spec_gen = spec_gen.squeeze().numpy() # [C, T_frame] # unload to cpu model.to("cpu") # delete gpu tensor del spec_gt, y_g_hat return audio_gen, spec_gen css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ # Script for loading the models LIST_MODEL_ID = [ "bigvgan_24khz_100band", "bigvgan_base_24khz_100band", "bigvgan_22khz_80band", "bigvgan_base_22khz_80band", "bigvgan_v2_22khz_80band_256x", "bigvgan_v2_22khz_80band_fmax8k_256x", "bigvgan_v2_24khz_100band_256x", "bigvgan_v2_44khz_128band_256x", "bigvgan_v2_44khz_128band_512x", ] dict_model = {} dict_config = {} for model_name in LIST_MODEL_ID: generator = BigVGAN.from_pretrained("nvidia/" + model_name) generator.remove_weight_norm() generator.eval() dict_model[model_name] = generator dict_config[model_name] = generator.h # Script for Gradio UI iface = gr.Blocks(css=css, title="BigVGAN - Demo") with iface: gr.HTML( """

BigVGAN: A Universal Neural Vocoder with Large-Scale Training

[Paper] [Code] [Demo] [Project page]

""" ) gr.HTML( """

News

[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:

""" ) gr.HTML( """

Model Overview

BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs.
""" ) with gr.Accordion("Input"): model_choice = gr.Dropdown( label="Select the model to use", info="The default model is bigvgan_v2_24khz_100band_256x", value="bigvgan_v2_24khz_100band_256x", choices=[m for m in LIST_MODEL_ID], interactive=True, ) audio_input = gr.Audio( label="Input Audio", elem_id="input-audio", interactive=True ) button = gr.Button("Submit") with gr.Accordion("Output"): with gr.Column(): output_audio = gr.Audio(label="Output Audio", elem_id="output-audio") output_image = gr.Image( label="Output Mel Spectrogram", elem_id="output-image-gen" ) button.click( inference_gradio, inputs=[audio_input, model_choice], outputs=[output_audio, output_image], concurrency_limit=10, ) gr.Examples( [ [ os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"), "bigvgan_v2_24khz_100band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"), "bigvgan_v2_24khz_100band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"), "bigvgan_v2_24khz_100band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"), "bigvgan_v2_24khz_100band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"), "bigvgan_v2_24khz_100band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"), "bigvgan_v2_44khz_128band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"), "bigvgan_v2_44khz_128band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"), "bigvgan_v2_44khz_128band_256x", ], [ os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"), "bigvgan_v2_44khz_128band_256x", ], ], fn=inference_gradio, inputs=[audio_input, model_choice], outputs=[output_audio, output_image], ) # Define the data for the table data = { "Model Name": [ "bigvgan_v2_44khz_128band_512x", "bigvgan_v2_44khz_128band_256x", "bigvgan_v2_24khz_100band_256x", "bigvgan_v2_22khz_80band_256x", "bigvgan_v2_22khz_80band_fmax8k_256x", "bigvgan_24khz_100band", "bigvgan_base_24khz_100band", "bigvgan_22khz_80band", "bigvgan_base_22khz_80band", ], "Sampling Rate": [ "44 kHz", "44 kHz", "24 kHz", "22 kHz", "22 kHz", "24 kHz", "24 kHz", "22 kHz", "22 kHz", ], "Mel band": [128, 128, 100, 80, 80, 100, 100, 80, 80], "fmax": [22050, 22050, 12000, 11025, 8000, 12000, 12000, 8000, 8000], "Upsampling Ratio": [512, 256, 256, 256, 256, 256, 256, 256, 256], "Parameters": [ "122M", "112M", "112M", "112M", "112M", "112M", "14M", "112M", "14M", ], "Dataset": [ "Large-scale Compilation", "Large-scale Compilation", "Large-scale Compilation", "Large-scale Compilation", "Large-scale Compilation", "LibriTTS", "LibriTTS", "LibriTTS + VCTK + LJSpeech", "LibriTTS + VCTK + LJSpeech", ], "Fine-Tuned": ["No", "No", "No", "No", "No", "No", "No", "No", "No"], } base_url = "https://huggingface.co/nvidia/" df = pd.DataFrame(data) df["Model Name"] = df["Model Name"].apply( lambda x: f'{x}' ) html_table = gr.HTML( f"""
{df.to_html(index=False, escape=False, classes='border="1" cellspacing="0" cellpadding="5" style="margin-left: auto; margin-right: auto;')}

NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).

""" ) iface.queue() iface.launch()