gheinrich commited on
Commit
47fe629
β€’
1 Parent(s): ff66d0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -35
app.py CHANGED
@@ -1,17 +1,22 @@
 
 
1
  import spaces
2
  import gradio as gr
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
- title = """# Minitron-8B-Base Story Generator"""
7
  description = """
8
  # Minitron
9
 
10
- Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
 
11
 
12
  # Short Story Generator
13
  Welcome to the Short Story Generator! This application helps you create unique short stories based on your inputs.
14
 
 
 
15
  **Instructions:**
16
  1. **Main Character:** Describe the main character of your story. For example, "a brave knight" or "a curious cat".
17
  2. **Setting:** Describe the setting where your story takes place. For example, "in an enchanted forest" or "in a bustling city".
@@ -29,55 +34,51 @@ inputs = [
29
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
30
  ]
31
 
32
- outputs = gr.Textbox(label="Generated Story")
33
 
34
- # Load the tokenizer and model
35
- model_path = "nvidia/Minitron-8B-Base"
36
- tokenizer = AutoTokenizer.from_pretrained(model_path)
 
 
37
 
38
  device='cuda'
39
  dtype=torch.bfloat16
40
- model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  # Define the prompt format
43
  def create_prompt(instruction):
44
  PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
45
  return PROMPT.format(instruction=instruction)
46
 
47
- @spaces.GPU
48
- def respond(message, history, system_message, max_tokens, temperature, top_p):
49
- prompt = create_prompt(message)
50
-
51
- input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
52
-
53
- output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
54
-
55
- output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
56
-
57
- return output_text
58
 
59
  @spaces.GPU
60
  def generate_story(character, setting, plot_twist, max_tokens, temperature, top_p):
61
  """Define the function to generate the story."""
62
  prompt = f"Write a short story with the following details:\nMain character: {character}\nSetting: {setting}\nPlot twist: {plot_twist}\n\nStory:"
63
- input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
64
-
65
- output_ids = model.generate(input_ids, max_length=max_tokens, num_return_sequences=1, temperature=temperature, top_p=top_p)
66
-
67
- output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
 
 
68
 
69
- return output_text
70
-
71
- #demo = gr.ChatInterface(
72
- # title=gr.Markdown(title),
73
- # description=gr.Markdown(description),
74
- # fn=generate_story,
75
- # additional_inputs=[
76
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
77
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
78
- # gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
79
- # ],
80
- #)
81
 
82
  # Create the Gradio interface
83
  demo = gr.Interface(
 
1
+ from collections import namedtuple
2
+
3
  import spaces
4
  import gradio as gr
5
  import torch
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
7
 
8
+ title = """# Minitron Story Generator"""
9
  description = """
10
  # Minitron
11
 
12
+ Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model, LLaMA3.1-8B or Mistral NeMO models.
13
+ We prune model the number of transformer blocks, embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
14
 
15
  # Short Story Generator
16
  Welcome to the Short Story Generator! This application helps you create unique short stories based on your inputs.
17
 
18
+ This application will show you the output of several models in the Minitron family. Outputs are shown side by side so you can compare them.
19
+
20
  **Instructions:**
21
  1. **Main Character:** Describe the main character of your story. For example, "a brave knight" or "a curious cat".
22
  2. **Setting:** Describe the setting where your story takes place. For example, "in an enchanted forest" or "in a bustling city".
 
34
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
35
  ]
36
 
37
+ Model = namedtuple('Model', ['name', 'llm', 'tokenizer'])
38
 
39
+ model_paths = [
40
+ "nvidia/Llama-3.1-Minitron-4B-Width-Base",
41
+ "nvidia/Llama-3.1-Minitron-4B-Depth-Base",
42
+ "nvidia/Mistral-NeMo-Minitron-8B-Base",
43
+ ]
44
 
45
  device='cuda'
46
  dtype=torch.bfloat16
47
+
48
+ # Load the tokenizers and models.
49
+ models = [
50
+ Model(
51
+ name=p.split("/")[-1],
52
+ llm=AutoModelForCausalLM.from_pretrained(p, torch_dtype=dtype, device_map=device),
53
+ tokenizer=AutoTokenizer.from_pretrained(p),
54
+ ) for p in model_paths
55
+ ]
56
+
57
+ outputs = [
58
+ gr.Textbox(label=f"Generated Story ({model.name})") for model in models
59
+ ]
60
 
61
  # Define the prompt format
62
  def create_prompt(instruction):
63
  PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
64
  return PROMPT.format(instruction=instruction)
65
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  @spaces.GPU
68
  def generate_story(character, setting, plot_twist, max_tokens, temperature, top_p):
69
  """Define the function to generate the story."""
70
  prompt = f"Write a short story with the following details:\nMain character: {character}\nSetting: {setting}\nPlot twist: {plot_twist}\n\nStory:"
71
+
72
+ output_texts = []
73
+
74
+ for model in models:
75
+ input_ids = model.tokenizer.encode(prompt, return_tensors="pt").to(model.llm.device)
76
+ output_ids = model.llm.generate(input_ids, max_length=max_tokens, num_return_sequences=1, temperature=temperature, top_p=top_p)
77
+ output_text = model.tokenizer.decode(output_ids[0], skip_special_tokens=True)
78
+ output_texts.append(output_text[len(prompt):])
79
 
80
+ return output_texts
81
+
 
 
 
 
 
 
 
 
 
 
82
 
83
  # Create the Gradio interface
84
  demo = gr.Interface(