radio / app.py
gheinrich's picture
Update app.py
703aea5 verified
import os
import requests
# Disable JIT
os.environ["PYTORCH_JIT"] = "0"
from einops import rearrange
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoModel, CLIPImageProcessor
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from segment_anything.modeling.image_encoder import ImageEncoderViT
class RADIOVenc(nn.Module):
def __init__(self, radio: nn.Module, img_enc: ImageEncoderViT, img_size: int = 1024):
super().__init__()
self.radio = radio
self.neck = img_enc.neck
self.img_size = img_size
self.dtype = radio.input_conditioner.dtype
def forward(self, x: torch.Tensor):
h, w = x.shape[-2:]
if self.dtype is not None:
x = x.to(dtype=self.dtype)
with torch.autocast('cuda', dtype=torch.bfloat16, enabled=self.dtype is None):
output = self.radio(x)
features = output["sam"].features
rows = h // 16
cols = w // 16
features = rearrange(features, 'b (h w) c -> b c h w', h=rows, w=cols)
features = self.neck(features)
return features
def download_file(url, save_path):
# Check if the file already exists
if os.path.exists(save_path):
print(f"File already exists at {save_path}. Skipping download.")
return
print(f"Downloading from {url}")
# Send a GET request to the URL
response = requests.get(url, stream=True)
# Check if the request was successful
if response.status_code == 200:
# Open the file in binary write mode
with open(save_path, 'wb') as file:
# Iterate over the response content in chunks
for chunk in response.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
file.write(chunk)
print(f"File downloaded successfully and saved as {save_path}")
else:
print(f"Failed to download file. HTTP Status Code: {response.status_code}")
hf_repo = "nvidia/RADIO-L"
image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
model_version = "radio_v2.5-l" # for RADIOv2.5-L model (ViT-L/16)
model = torch.hub.load(
'NVlabs/RADIO',
'radio_model',
version=model_version,
progress=True,
skip_validation=True,
adaptor_names='sam')
model.eval()
local_sam_checkpoint_path = "sam_vit_h_4b8939.pth"
download_file("https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", local_sam_checkpoint_path)
sam = sam_model_registry["vit_h"](checkpoint=local_sam_checkpoint_path)
model._patch_size = 16
sam.image_encoder = RADIOVenc(model, sam.image_encoder, img_size=1024)
conditioner = model.make_preprocessor_external()
sam.pixel_mean = conditioner.norm_mean * 255
sam.pixel_std = conditioner.norm_std * 255
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
# features: (N, C)
# m: a hyperparam controlling how many std dev outside for outliers
assert len(features.shape) == 2, "features should be (N, C)"
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
colors = features @ reduction_mat
if remove_first_component:
colors_min = colors.min(dim=0).values
colors_max = colors.max(dim=0).values
tmp_colors = (colors - colors_min) / (colors_max - colors_min)
fg_mask = tmp_colors[..., 0] < 0.2
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
colors = features @ reduction_mat
else:
fg_mask = torch.ones_like(colors[:, 0]).bool()
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
mdev = torch.median(d, dim=0).values
s = d / mdev
try:
rins = colors[fg_mask][s[:, 0] < m, 0]
gins = colors[fg_mask][s[:, 1] < m, 1]
bins = colors[fg_mask][s[:, 2] < m, 2]
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
except:
rins = colors
gins = colors
bins = colors
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)
def get_pca_map(
feature_map: torch.Tensor,
img_size,
interpolation="bicubic",
return_pca_stats=False,
pca_stats=None,
):
"""
feature_map: (1, h, w, C) is the feature map of a single image.
"""
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
if pca_stats is None:
reduct_mat, color_min, color_max = get_robust_pca(
feature_map.reshape(-1, feature_map.shape[-1])
)
else:
reduct_mat, color_min, color_max = pca_stats
pca_color = feature_map @ reduct_mat
pca_color = (pca_color - color_min) / (color_max - color_min)
pca_color = pca_color.clamp(0, 1)
pca_color = F.interpolate(
pca_color.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
pca_color = pca_color.cpu().numpy().squeeze(0)
if return_pca_stats:
return pca_color, (reduct_mat, color_min, color_max)
return pca_color
def pad_image_to_multiple_of(image, multiple=16):
# Calculate the new dimensions to make them multiples
width, height = image.size
new_width = (width + multiple -1) // multiple * multiple
new_height = (height + multiple -1) // multiple * multiple
# Calculate the padding needed on each side
pad_width = new_width - width
pad_height = new_height - height
left = pad_width // 2
right = pad_width - left
top = pad_height // 2
bottom = pad_height - top
# Apply the padding
padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black')
return padded_image
def center_crop_resize(image, size=(1024, 1024)):
# Get dimensions
width, height = image.size
# Determine the center crop box
if width > height:
new_width = height
new_height = height
left = (width - new_width) / 2
top = 0
right = (width + new_width) / 2
bottom = height
else:
new_width = width
new_height = width
left = 0
top = (height - new_height) / 2
right = width
bottom = (height + new_height) / 2
# Crop the image to a square
image = image.crop((left, top, right, bottom))
# Resize the cropped image to the target size
image = image.resize(size, Image.LANCZOS)
return image
def visualize_anns(orig_image: np.ndarray, anns):
if len(anns) == 0:
return orig_image
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
kernel = torch.ones(1, 1, 5, 5, dtype=torch.float32)
# RGBA
mask = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4), dtype=np.float32)
mask[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
tm = torch.as_tensor(m).reshape(1, 1, *m.shape).float()
cvtm = F.conv2d(tm, kernel, padding=2)
border_mask = (cvtm < 25).flatten(0, 2).numpy()
mask[m] = color_mask
mask[m & border_mask, 3] *= 1.0 / 0.35
color, alpha = mask[..., :3], mask[..., -1:]
orig_image = orig_image.astype(np.float32) / 255
overlay = alpha * color + (1 - alpha) * orig_image
overlay = (overlay * 255).astype(np.uint8)
return overlay
@spaces.GPU
def infer_radio(image):
"""Define the function to generate the output."""
model.cuda()
conditioner.cuda()
sam.cuda()
sam_generator = SamAutomaticMaskGenerator(sam, output_mode="binary_mask")
# PCA feature visalization
padded_image=pad_image_to_multiple_of(image, multiple=256)
width, height = padded_image.size
pixel_values = image_processor(images=padded_image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
pixel_values = conditioner(pixel_values)
_, features = model(pixel_values)["backbone"]
num_rows = height // model.patch_size
num_cols = width // model.patch_size
features = features.detach()
features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float()
pca_viz = get_pca_map(features, (height, width), interpolation='bilinear')
# SAM feature visualization
resized_image = center_crop_resize(image)
image_array = np.array(image)
print("image size", image_array.shape)
#image_array = np.transpose(image_array, (2, 0, 1))
masks = sam_generator.generate(image_array)
overlay = visualize_anns(image_array, masks)
return pca_viz, overlay, f"{features.shape}"
title = """RADIO: Reduce All Domains Into One"""
description = """
# RADIO
[AM-RADIO](https://github.com/NVlabs/RADIO) is a framework to distill Large Vision Foundation models into a single one.
RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones.
Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence.
Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images.
# Instructions
Paste an image into the input box or pick one from the gallery of examples and then click the "Submit" button.
The RADIO backbone features are processed with a PCA projection to 3 channels and displayed as an RGB channels.
The SAM features are processed using the SAM decoder and shown as an overlay on top of the input image.
"""
inputs = [
gr.Image(type="pil")
]
outputs = [
gr.Image(label="PCA Feature Visalization"),
gr.Image(label="SAM Masks"),
gr.Textbox(label="Feature Shape"),
]
# Create the Gradio interface
demo = gr.Interface(
fn=infer_radio,
inputs=inputs,
examples="./samples/",
outputs=outputs,
title=title,
description=description,
cache_examples=False
)
if __name__ == "__main__":
demo.launch()