Spaces:
Running
Running
File size: 6,837 Bytes
5fab6ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# RAG_Library_2.py
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
#
# Import necessary modules and functions
import configparser
import logging
import os
from typing import Dict, Any, List, Optional
# Local Imports
#from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
from App_Function_Libraries.Article_Extractor_Lib import scrape_article
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media, \
fetch_keywords_for_media
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
# 3rd-Party Imports
import openai
#
########################################################################################################################
#
# Functions:
# Initialize OpenAI client (adjust this based on your API key management)
openai.api_key = "your-openai-api-key"
# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
config.read('config.txt')
def generate_answer(api_choice: str, context: str, query: str) -> str:
logging.debug("Entering generate_answer function")
config = load_comprehensive_config()
logging.debug(f"Config sections: {config.sections()}")
prompt = f"Context: {context}\n\nQuestion: {query}"
if api_choice == "OpenAI":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
elif api_choice == "Anthropic":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
elif api_choice == "Cohere":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
elif api_choice == "Groq":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
elif api_choice == "OpenRouter":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
elif api_choice == "HuggingFace":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
elif api_choice == "DeepSeek":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
elif api_choice == "Mistral":
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
elif api_choice == "Local-LLM":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
elif api_choice == "Llama.cpp":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
elif api_choice == "Kobold":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
elif api_choice == "Ooba":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
elif api_choice == "TabbyAPI":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
elif api_choice == "vLLM":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
elif api_choice == "ollama":
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
else:
raise ValueError(f"Unsupported API choice: {api_choice}")
def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
filtered_fts_results = [
{
"content": result['content'],
"metadata": {"media_id": result['id']}
}
for result in fts_results
if relevant_media_ids is None or result['id'] in relevant_media_ids
]
return filtered_fts_results
def fetch_relevant_media_ids(keywords: List[str]) -> List[int]:
relevant_ids = set()
try:
for keyword in keywords:
media_ids = fetch_keywords_for_media(keyword)
relevant_ids.update(media_ids)
except Exception as e:
logging.error(f"Error fetching relevant media IDs: {str(e)}")
return list(relevant_ids)
# Example usage:
# 1. Initialize the system:
# create_tables(db) # Ensure FTS tables are set up
#
# 2. Create ChromaDB
# chroma_client = ChromaDBClient()
#
# 3. Create Embeddings
# Store embeddings in ChromaDB
# preprocess_all_content() or create_embeddings()
#
# 4. Perform RAG search across all content:
# result = rag_search("What are the key points about climate change?")
# print(result['answer'])
#
# (Extra)5. Perform RAG on a specific URL:
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
# print(result['answer'])
#
########################################################################################################################
############################################################################################################
#
# ElasticSearch Retriever
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
#
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
#
# End of RAG_Library_2.py
############################################################################################################
|