Spaces:
Running
Running
File size: 13,834 Bytes
9db5a77 ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Article_Summarization_Lib.py
#########################################
# Article Summarization Library
# This library is used to handle summarization of articles.
#
####
#
####################
# Function List
#
# 1.
#
####################
#
# Import necessary libraries
import datetime
from datetime import datetime
import gradio as gr
import json
import os
import logging
import requests
# 3rd-Party Imports
from tqdm import tqdm
from App_Function_Libraries.Utils import sanitize_filename
# Local Imports
from Article_Extractor_Lib import scrape_article
from Local_Summarization_Lib import summarize_with_llama, summarize_with_oobabooga, summarize_with_tabbyapi, \
summarize_with_vllm, summarize_with_kobold, save_summary_to_file, summarize_with_local_llm
from Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, summarize_with_cohere, \
summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, summarize_with_huggingface, \
summarize_with_mistral
from SQLite_DB import Database, create_tables, add_media_with_keywords
#
#######################################################################################################################
# Function Definitions
#
def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt):
try:
# Check if content is not empty or whitespace
if not content.strip():
raise ValueError("Content is empty.")
db = Database()
create_tables()
keyword_list = keywords.split(',') if keywords else ["default"]
keyword_str = ', '.join(keyword_list)
# Set default values for missing fields
url = url or 'Unknown'
title = title or 'Unknown'
author = author or 'Unknown'
keywords = keywords or 'default'
summary = summary or 'No summary available'
ingestion_date = ingestion_date or datetime.datetime.now().strftime('%Y-%m-%d')
# Log the values of all fields before calling add_media_with_keywords
logging.debug(f"URL: {url}")
logging.debug(f"Title: {title}")
logging.debug(f"Author: {author}")
logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content
logging.debug(f"Keywords: {keywords}")
logging.debug(f"Summary: {summary}")
logging.debug(f"Ingestion Date: {ingestion_date}")
logging.debug(f"Custom Prompt: {custom_prompt}")
# Check if any required field is empty and log the specific missing field
if not url:
logging.error("URL is missing.")
raise ValueError("URL is missing.")
if not title:
logging.error("Title is missing.")
raise ValueError("Title is missing.")
if not content:
logging.error("Content is missing.")
raise ValueError("Content is missing.")
if not keywords:
logging.error("Keywords are missing.")
raise ValueError("Keywords are missing.")
if not summary:
logging.error("Summary is missing.")
raise ValueError("Summary is missing.")
if not ingestion_date:
logging.error("Ingestion date is missing.")
raise ValueError("Ingestion date is missing.")
if not custom_prompt:
logging.error("Custom prompt is missing.")
raise ValueError("Custom prompt is missing.")
# Add media with keywords to the database
result = add_media_with_keywords(
url=url,
title=title,
media_type='article',
content=content,
keywords=keyword_str or "article_default",
prompt=custom_prompt or None,
summary=summary or "No summary generated",
transcription_model=None, # or some default value if applicable
author=author or 'Unknown',
ingestion_date=ingestion_date
)
return result
except Exception as e:
logging.error(f"Failed to ingest article to the database: {e}")
return str(e)
def scrape_and_summarize_multiple(urls, custom_prompt_arg, api_name, api_key, keywords, custom_article_titles, system_message=None):
urls = [url.strip() for url in urls.split('\n') if url.strip()]
custom_titles = custom_article_titles.split('\n') if custom_article_titles else []
results = []
errors = []
# Create a progress bar
progress = gr.Progress()
for i, url in tqdm(enumerate(urls), total=len(urls), desc="Processing URLs"):
custom_title = custom_titles[i] if i < len(custom_titles) else None
try:
result = scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_title, system_message)
results.append(f"Results for URL {i + 1}:\n{result}")
except Exception as e:
error_message = f"Error processing URL {i + 1} ({url}): {str(e)}"
errors.append(error_message)
results.append(f"Failed to process URL {i + 1}: {url}")
# Update progress
progress((i + 1) / len(urls), desc=f"Processed {i + 1}/{len(urls)} URLs")
# Combine results and errors
combined_output = "\n".join(results)
if errors:
combined_output += "\n\nErrors encountered:\n" + "\n".join(errors)
return combined_output
def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title, system_message=None):
try:
# Step 1: Scrape the article
article_data = scrape_article(url)
print(f"Scraped Article Data: {article_data}") # Debugging statement
if not article_data:
return "Failed to scrape the article."
# Use the custom title if provided, otherwise use the scraped title
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled')
author = article_data.get('author', 'Unknown')
content = article_data.get('content', '')
ingestion_date = datetime.now().strftime('%Y-%m-%d')
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement
# Custom system prompt for the article
system_message = system_message or "Act as a professional summarizer and summarize this article."
# Custom prompt for the article
article_custom_prompt = custom_prompt_arg or "Act as a professional summarizer and summarize this article."
# Step 2: Summarize the article
summary = None
if api_name:
logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}")
# Sanitize filename for saving the JSON file
sanitized_title = sanitize_filename(title)
json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json")
with open(json_file_path, 'w') as json_file:
json.dump([{'text': content}], json_file, indent=2)
# FIXME - Swap out this if/else to use the dedicated function....
try:
if api_name.lower() == 'openai':
# def summarize_with_openai(api_key, input_data, custom_prompt_arg)
summary = summarize_with_openai(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "anthropic":
# def summarize_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5):
summary = summarize_with_anthropic(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "cohere":
# def summarize_with_cohere(api_key, input_data, model, custom_prompt_arg)
summary = summarize_with_cohere(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "groq":
logging.debug(f"MAIN: Trying to summarize with groq")
# def summarize_with_groq(api_key, input_data, model, custom_prompt_arg):
summary = summarize_with_groq(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "openrouter":
logging.debug(f"MAIN: Trying to summarize with OpenRouter")
# def summarize_with_openrouter(api_key, input_data, custom_prompt_arg):
summary = summarize_with_openrouter(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "deepseek":
logging.debug(f"MAIN: Trying to summarize with DeepSeek")
# def summarize_with_deepseek(api_key, input_data, custom_prompt_arg):
summary = summarize_with_deepseek(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "mistral":
summary = summarize_with_mistral(api_key, json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "llama.cpp":
logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
# def summarize_with_llama(api_url, file_path, token, custom_prompt)
summary = summarize_with_llama(json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "kobold":
logging.debug(f"MAIN: Trying to summarize with Kobold.cpp")
# def summarize_with_kobold(input_data, kobold_api_token, custom_prompt_input, api_url):
summary = summarize_with_kobold(json_file_path, api_key, article_custom_prompt, system_message)
elif api_name.lower() == "ooba":
# def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url):
summary = summarize_with_oobabooga(json_file_path, api_key, article_custom_prompt, system_message)
elif api_name.lower() == "tabbyapi":
# def summarize_with_tabbyapi(input_data, tabby_model, custom_prompt_input, api_key=None, api_IP):
summary = summarize_with_tabbyapi(json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "vllm":
logging.debug(f"MAIN: Trying to summarize with VLLM")
# def summarize_with_vllm(api_key, input_data, custom_prompt_input):
summary = summarize_with_vllm(json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "local-llm":
logging.debug(f"MAIN: Trying to summarize with Local LLM")
summary = summarize_with_local_llm(json_file_path, article_custom_prompt, system_message)
elif api_name.lower() == "huggingface":
logging.debug(f"MAIN: Trying to summarize with huggingface")
# def summarize_with_huggingface(api_key, input_data, custom_prompt_arg):
summarize_with_huggingface(api_key, json_file_path, article_custom_prompt, system_message)
# Add additional API handlers here...
except requests.exceptions.ConnectionError as e:
logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}")
if summary:
logging.info(f"Article_Summarizer: Summary generated using {api_name} API")
save_summary_to_file(summary, json_file_path)
else:
summary = "Summary not available"
logging.warning(f"Failed to generate summary using {api_name} API")
else:
summary = "Article Summarization: No API provided for summarization."
print(f"Summary: {summary}") # Debugging statement
# Step 3: Ingest the article into the database
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date,
article_custom_prompt)
return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nSummary: {summary}\n\nArticle Contents: {content}"
except Exception as e:
logging.error(f"Error processing URL {url}: {str(e)}")
return f"Failed to process URL {url}: {str(e)}"
def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title, system_message=None):
title = custom_article_title.strip() if custom_article_title else "Unstructured Text"
author = "Unknown"
ingestion_date = datetime.now().strftime('%Y-%m-%d')
# Summarize the unstructured text
if api_name:
json_file_path = f"Results/{title.replace(' ', '_')}_segments.json"
with open(json_file_path, 'w') as json_file:
json.dump([{'text': text}], json_file, indent=2)
if api_name.lower() == 'openai':
summary = summarize_with_openai(api_key, json_file_path, custom_prompt, system_message)
# Add other APIs as needed
else:
summary = "Unsupported API."
else:
summary = "No API provided for summarization."
# Ingest the unstructured text into the database
ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date,
custom_prompt)
return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}"
#
#
####################################################################################################################### |