Spaces:
Running
Running
File size: 19,129 Bytes
ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# Chunk_Lib.py
#########################################
# Chunking Library
# This library is used to perform chunking of input files.
# Currently, uses naive approaches. Nothing fancy.
#
####
# Import necessary libraries
import logging
import re
from typing import List, Optional, Tuple, Dict, Any
from openai import OpenAI
from tqdm import tqdm
#
# Import 3rd party
from transformers import GPT2Tokenizer
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#
# Import Local
from App_Function_Libraries.Tokenization_Methods_Lib import openai_tokenize
from App_Function_Libraries.Utils import load_comprehensive_config
#
#######################################################################################################################
# Function Definitions
#
# FIXME - Make sure it only downloads if it already exists, and does a check first.
# Ensure NLTK data is downloaded
def ntlk_prep():
nltk.download('punkt')
# Load GPT2 tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Load Config file for API keys
config = load_comprehensive_config()
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
def load_document(file_path):
with open(file_path, 'r') as file:
text = file.read()
return re.sub('\\s+', ' ', text).strip()
def improved_chunking_process(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
chunk_method = chunk_options.get('method', 'words')
max_chunk_size = chunk_options.get('max_size', 300)
overlap = chunk_options.get('overlap', 0)
language = chunk_options.get('language', 'english')
adaptive = chunk_options.get('adaptive', False)
multi_level = chunk_options.get('multi_level', False)
if adaptive:
max_chunk_size = adaptive_chunk_size(text, max_chunk_size)
if multi_level:
chunks = multi_level_chunking(text, chunk_method, max_chunk_size, overlap, language)
else:
if chunk_method == 'words':
chunks = chunk_text_by_words(text, max_chunk_size, overlap)
elif chunk_method == 'sentences':
chunks = chunk_text_by_sentences(text, max_chunk_size, overlap, language)
elif chunk_method == 'paragraphs':
chunks = chunk_text_by_paragraphs(text, max_chunk_size, overlap)
elif chunk_method == 'tokens':
chunks = chunk_text_by_tokens(text, max_chunk_size, overlap)
else:
chunks = [text] # No chunking applied
return [{'text': chunk, 'metadata': get_chunk_metadata(chunk, text)} for chunk in chunks]
def adaptive_chunk_size(text: str, base_size: int) -> int:
# Simple adaptive logic: adjust chunk size based on text complexity
avg_word_length = sum(len(word) for word in text.split()) / len(text.split())
if avg_word_length > 6: # Arbitrary threshold for "complex" text
return int(base_size * 0.8) # Reduce chunk size for complex text
return base_size
def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
# First level: chunk by paragraphs
paragraphs = chunk_text_by_paragraphs(text, max_size * 2, overlap)
# Second level: chunk each paragraph further
chunks = []
for para in paragraphs:
if method == 'words':
chunks.extend(chunk_text_by_words(para, max_size, overlap))
elif method == 'sentences':
chunks.extend(chunk_text_by_sentences(para, max_size, overlap, language))
else:
chunks.append(para)
return chunks
def chunk_text_by_words(text: str, max_words: int = 300, overlap: int = 0) -> List[str]:
words = text.split()
chunks = []
for i in range(0, len(words), max_words - overlap):
chunk = ' '.join(words[i:i + max_words])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0, language: str = 'english') -> List[
str]:
nltk.download('punkt', quiet=True)
sentences = nltk.sent_tokenize(text, language=language)
chunks = []
for i in range(0, len(sentences), max_sentences - overlap):
chunk = ' '.join(sentences[i:i + max_sentences])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_paragraphs(text: str, max_paragraphs: int = 5, overlap: int = 0) -> List[str]:
paragraphs = re.split(r'\n\s*\n', text)
chunks = []
for i in range(0, len(paragraphs), max_paragraphs - overlap):
chunk = '\n\n'.join(paragraphs[i:i + max_paragraphs])
chunks.append(chunk)
return post_process_chunks(chunks)
def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
# This is a simplified token-based chunking. For more accurate tokenization,
# consider using a proper tokenizer like GPT-2 TokenizerFast
words = text.split()
chunks = []
current_chunk = []
current_token_count = 0
for word in words:
word_token_count = len(word) // 4 + 1 # Rough estimate of token count
if current_token_count + word_token_count > max_tokens and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = current_chunk[-overlap:] if overlap > 0 else []
current_token_count = sum(len(w) // 4 + 1 for w in current_chunk)
current_chunk.append(word)
current_token_count += word_token_count
if current_chunk:
chunks.append(' '.join(current_chunk))
return post_process_chunks(chunks)
def post_process_chunks(chunks: List[str]) -> List[str]:
return [chunk.strip() for chunk in chunks if chunk.strip()]
def get_chunk_metadata(chunk: str, full_text: str) -> Dict[str, Any]:
start_index = full_text.index(chunk)
return {
'start_index': start_index,
'end_index': start_index + len(chunk),
'word_count': len(chunk.split()),
'char_count': len(chunk)
}
# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
def chunk_text_hybrid(text, max_tokens=1000):
sentences = nltk.tokenize.sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
tokens = tokenizer.encode(sentence)
if current_length + len(tokens) <= max_tokens:
current_chunk.append(sentence)
current_length += len(tokens)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = len(tokens)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# Thanks openai
def chunk_on_delimiter(input_string: str,
max_tokens: int,
delimiter: str) -> List[str]:
chunks = input_string.split(delimiter)
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
if dropped_chunk_count > 0:
print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
return combined_chunks
def recursive_summarize_chunks(chunks, summarize_func, custom_prompt):
summarized_chunks = []
current_summary = ""
for i, chunk in enumerate(chunks):
if i == 0:
current_summary = summarize_func(chunk, custom_prompt)
else:
combined_text = current_summary + "\n\n" + chunk
current_summary = summarize_func(combined_text, custom_prompt)
summarized_chunks.append(current_summary)
return summarized_chunks
# Sample text for testing
sample_text = """
Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence
concerned with the interactions between computers and human language, in particular how to program computers
to process and analyze large amounts of natural language data. The result is a computer capable of "understanding"
the contents of documents, including the contextual nuances of the language within them. The technology can then
accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Challenges in natural language processing frequently involve speech recognition, natural language understanding,
and natural language generation.
Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled
"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence.
"""
# Example usage of different chunking methods
# print("Chunking by words:")
# print(chunk_text_by_words(sample_text, max_words=50))
#
# print("\nChunking by sentences:")
# print(chunk_text_by_sentences(sample_text, max_sentences=2))
#
# print("\nChunking by paragraphs:")
# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1))
#
# print("\nChunking by tokens:")
# print(chunk_text_by_tokens(sample_text, max_tokens=50))
#
# print("\nHybrid chunking:")
# print(chunk_text_hybrid(sample_text, max_tokens=50))
#######################################################################################################################
#
# Experimental Semantic Chunking
#
# Chunk text into segments based on semantic similarity
def count_units(text, unit='tokens'):
if unit == 'words':
return len(text.split())
elif unit == 'tokens':
return len(word_tokenize(text))
elif unit == 'characters':
return len(text)
else:
raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")
def semantic_chunking(text, max_chunk_size=2000, unit='words'):
nltk.download('punkt', quiet=True)
sentences = sent_tokenize(text)
vectorizer = TfidfVectorizer()
sentence_vectors = vectorizer.fit_transform(sentences)
chunks = []
current_chunk = []
current_size = 0
for i, sentence in enumerate(sentences):
sentence_size = count_units(sentence, unit)
if current_size + sentence_size > max_chunk_size and current_chunk:
chunks.append(' '.join(current_chunk))
overlap_size = count_units(' '.join(current_chunk[-3:]), unit) # Use last 3 sentences for overlap
current_chunk = current_chunk[-3:] # Keep last 3 sentences for overlap
current_size = overlap_size
current_chunk.append(sentence)
current_size += sentence_size
if i + 1 < len(sentences):
current_vector = sentence_vectors[i]
next_vector = sentence_vectors[i + 1]
similarity = cosine_similarity(current_vector, next_vector)[0][0]
if similarity < 0.5 and current_size >= max_chunk_size // 2:
chunks.append(' '.join(current_chunk))
overlap_size = count_units(' '.join(current_chunk[-3:]), unit)
current_chunk = current_chunk[-3:]
current_size = overlap_size
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def semantic_chunk_long_file(file_path, max_chunk_size=1000, overlap=100):
try:
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
chunks = semantic_chunking(content, max_chunk_size, overlap)
return chunks
except Exception as e:
logging.error(f"Error chunking text file: {str(e)}")
return None
#######################################################################################################################
#######################################################################################################################
#
# OpenAI Rolling Summarization
#
client = OpenAI(api_key=openai_api_key)
def get_chat_completion(messages, model='gpt-4-turbo'):
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0,
)
return response.choices[0].message.content
# This function combines text chunks into larger blocks without exceeding a specified token count.
# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
def combine_chunks_with_no_minimum(
chunks: List[str],
max_tokens: int,
chunk_delimiter="\n\n",
header: Optional[str] = None,
add_ellipsis_for_overflow=False,
) -> Tuple[List[str], List[int]]:
dropped_chunk_count = 0
output = [] # list to hold the final combined chunks
output_indices = [] # list to hold the indices of the final combined chunks
candidate = (
[] if header is None else [header]
) # list to hold the current combined chunk candidate
candidate_indices = []
for chunk_i, chunk in enumerate(chunks):
chunk_with_header = [chunk] if header is None else [header, chunk]
# FIXME MAKE NOT OPENAI SPECIFIC
if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
print(f"warning: chunk overflow")
if (
add_ellipsis_for_overflow
# FIXME MAKE NOT OPENAI SPECIFIC
and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
):
candidate.append("...")
dropped_chunk_count += 1
continue # this case would break downstream assumptions
# estimate token count with the current chunk added
# FIXME MAKE NOT OPENAI SPECIFIC
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
if extended_candidate_token_count > max_tokens:
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
candidate = chunk_with_header # re-initialize candidate
candidate_indices = [chunk_i]
# otherwise keep extending the candidate
else:
candidate.append(chunk)
candidate_indices.append(chunk_i)
# add the remaining candidate to output if it's not empty
if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
return output, output_indices, dropped_chunk_count
def rolling_summarize(text: str,
detail: float = 0,
model: str = 'gpt-4-turbo',
additional_instructions: Optional[str] = None,
minimum_chunk_size: Optional[int] = 500,
chunk_delimiter: str = ".",
summarize_recursively=False,
verbose=False):
"""
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
Parameters:
- text (str): The text to be summarized.
- detail (float, optional): A value between 0 and 1
indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more
detailed summary. Defaults to 0.
- additional_instructions (Optional[str], optional): Additional instructions to provide to the
model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text
chunks. Defaults to 500.
- chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".".
- summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context.
- verbose (bool, optional): If True, prints detailed information about the chunking process.
Returns:
- str: The final compiled summary of the text.
The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count
based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If
`summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the
summarization process. The function returns a compiled summary of all chunks.
"""
# check detail is set correctly
assert 0 <= detail <= 1
# interpolate the number of chunks based to get specified level of detail
max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
min_chunks = 1
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
# adjust chunk_size based on interpolated number of chunks
# FIXME MAKE NOT OPENAI SPECIFIC
document_length = len(openai_tokenize(text))
chunk_size = max(minimum_chunk_size, document_length // num_chunks)
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
if verbose:
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
# FIXME MAKE NOT OPENAI SPECIFIC
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")
# set system message - FIXME
system_message_content = "Rewrite this text in summarized form."
if additional_instructions is not None:
system_message_content += f"\n\n{additional_instructions}"
accumulated_summaries = []
for i, chunk in enumerate(tqdm(text_chunks)):
if summarize_recursively and accumulated_summaries:
# Combine previous summary with current chunk for recursive summarization
combined_text = accumulated_summaries[-1] + "\n\n" + chunk
user_message_content = f"Previous summary and new content to summarize:\n\n{combined_text}"
else:
user_message_content = chunk
messages = [
{"role": "system", "content": system_message_content},
{"role": "user", "content": user_message_content}
]
response = get_chat_completion(messages, model=model)
accumulated_summaries.append(response)
final_summary = '\n\n'.join(accumulated_summaries)
return final_summary
|