Spaces:
Running
Running
File size: 40,135 Bytes
7e8c144 c8c0aee 7e8c144 354deab 91b175e 7e8c144 3ce0d3e 7e8c144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
#!/usr/bin/env python3
# Std Lib Imports
import argparse
import atexit
import json
import logging
import os
import signal
import sys
import time
import webbrowser
# Have I mentioned my opinions on gradio today?
#
global_huggingface_api_key = os.environ['HF_TOKEN']
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
# Local Library Imports
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries')))
from App_Function_Libraries.Gradio_Related import launch_ui
#
# 3rd-Party Module Imports
import requests
# OpenAI Tokenizer support
#
# Other Tokenizers
#
#######################
# Logging Setup
#
log_level = "DEBUG"
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
#
#############
# Global variables setup
#custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the "
#"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main "
#"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, "
#"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> "
#"tags.")
#
# Global variables
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
"distil-large-v2", "distil-medium.en", "distil-small.en"]
server_mode = False
share_public = False
#
#
#######################
#######################
# Function Sections
#
abc_xyz = """
Database Setup
Config Loading
System Checks
DataBase Functions
Processing Paths and local file handling
Video Download/Handling
Audio Transcription
Diarization
Chunking-related Techniques & Functions
Tokenization-related Techniques & Functions
Summarizers
Gradio UI
Main
"""
#
#
#######################
#######################
#
# TL/DW: Too Long Didn't Watch
#
# Project originally created by https://github.com/the-crypt-keeper
# Modifications made by https://github.com/rmusser01
# All credit to the original authors, I've just glued shit together.
#
#
# Usage:
#
# Download Audio only from URL -> Transcribe audio:
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
#
# Download Audio+Video from URL -> Transcribe audio from Video:**
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
#
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
#
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
#
# Run it as a WebApp**
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
#
#######################
#######################
# Random issues I've encountered and how I solved them:
# 1. Something about cuda nn library missing, even though cuda is installed...
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
# Or https://github.com/SYSTRAN/faster-whisper/issues/85
#
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
# Resolved through adding --user to the pip install command
#
# 3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path!
#
# 4.
#
# 5.
#
#
#
#######################
#######################
# DB Setup
# Handled by SQLite_DB.py
#######################
#######################
# Config loading
#
# 1.
# 2.
#
#
#######################
#######################
# System Startup Notice
#
# Dirty hack - sue me. - FIXME - fix this...
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
"distil-large-v2", "distil-medium.en", "distil-small.en"]
source_languages = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]
def print_hello():
print(r"""_____ _ ________ _ _
|_ _|| | / /| _ \| | | | _
| | | | / / | | | || | | |(_)
| | | | / / | | | || |/\| |
| | | |____ / / | |/ / \ /\ / _
\_/ \_____//_/ |___/ \/ \/ (_)
_ _
| | | |
| |_ ___ ___ | | ___ _ __ __ _
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
| |_ | (_) || (_) | | || (_) || | | || (_| | _
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
__/ ||/
|___/
_ _ _ _ _ _ _
| |(_) | | ( )| | | | | |
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
""")
time.sleep(1)
return
#
#
#######################
#######################
# System Check Functions
#
# 1. platform_check()
# 2. cuda_check()
# 3. decide_cpugpu()
# 4. check_ffmpeg()
# 5. download_ffmpeg()
#
#######################
#######################
# DB Functions
#
# create_tables()
# add_keyword()
# delete_keyword()
# add_keyword()
# add_media_with_keywords()
# search_db()
# format_results()
# search_and_display()
# export_to_csv()
# is_valid_url()
# is_valid_date()
#
########################################################################################################################
########################################################################################################################
# Processing Paths and local file handling
#
# Function List
# 1. read_paths_from_file(file_path)
# 2. process_path(path)
# 3. process_local_file(file_path)
# 4. read_paths_from_file(file_path: str) -> List[str]
#
#
########################################################################################################################
#######################################################################################################################
# Online Article Extraction / Handling
#
# Function List
# 1. get_page_title(url)
# 2. get_article_text(url)
# 3. get_article_title(article_url_arg)
#
#
#######################################################################################################################
#######################################################################################################################
# Video Download/Handling
# Video-DL-Ingestion-Lib
#
# Function List
# 1. get_video_info(url)
# 2. create_download_directory(title)
# 3. sanitize_filename(title)
# 4. normalize_title(title)
# 5. get_youtube(video_url)
# 6. get_playlist_videos(playlist_url)
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
# 8. save_to_file(video_urls, filename)
# 9. save_summary_to_file(summary, file_path)
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE
#
#
#######################################################################################################################
#######################################################################################################################
# Audio Transcription
#
# Function List
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
#
#
#######################################################################################################################
#######################################################################################################################
# Diarization
#
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding",
# embedding_size=512, num_speakers=0)
#
#
#######################################################################################################################
#######################################################################################################################
# Chunking-related Techniques & Functions
#
#
# FIXME
#
#
#######################################################################################################################
#######################################################################################################################
# Tokenization-related Functions
#
#
# FIXME
#
#
#######################################################################################################################
#######################################################################################################################
# Website-related Techniques & Functions
#
#
#
#
#######################################################################################################################
#######################################################################################################################
# Summarizers
#
# Function List
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
#
#################################
# Local Summarization
#
# Function List
#
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#######################################################################################################################
#######################################################################################################################
# Summarization with Detail
#
# FIXME - see 'Old_Chunking_Lib.py'
#
#
#######################################################################################################################
#######################################################################################################################
# Gradio UI
#
#
#
#
#
#################################################################################################################
#
#######################################################################################################################
# Local LLM Setup / Running
#
# Function List
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. cleanup_process()
# 5. signal_handler(sig, frame)
# 6. local_llm_function()
# 7. launch_in_new_terminal_windows(executable, args)
# 8. launch_in_new_terminal_linux(executable, args)
# 9. launch_in_new_terminal_mac(executable, args)
#
#
#######################################################################################################################
#######################################################################################################################
# Helper Functions for Main() & process_url()
#
#
#
#######################################################################################################################
######################################################################################################################
# Main()
#
def main(input_path, api_name=None, api_key=None,
num_speakers=2,
whisper_model="small.en",
offset=0,
vad_filter=False,
download_video_flag=False,
custom_prompt=None,
overwrite=False,
rolling_summarization=False,
detail=0.01,
keywords=None,
llm_model=None,
time_based=False,
set_chunk_txt_by_words=False,
set_max_txt_chunk_words=0,
set_chunk_txt_by_sentences=False,
set_max_txt_chunk_sentences=0,
set_chunk_txt_by_paragraphs=False,
set_max_txt_chunk_paragraphs=0,
set_chunk_txt_by_tokens=False,
set_max_txt_chunk_tokens=0,
ingest_text_file=False,
chunk=False,
max_chunk_size=2000,
chunk_overlap=100,
chunk_unit='tokens',
summarize_chunks=None,
diarize=False
):
global detail_level_number, summary, audio_file, transcription_text, info_dict
detail_level = detail
print(f"Keywords: {keywords}")
if not input_path:
return []
start_time = time.monotonic()
paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path)
results = []
for path in paths:
try:
if path.startswith('http'):
info_dict, title = extract_video_info(path)
download_path = create_download_directory(title)
video_path = download_video(path, download_path, info_dict, download_video_flag)
if video_path:
if diarize:
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
transcription_text = {'audio_file': audio_file, 'transcription': segments}
else:
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
transcription_text = {'audio_file': audio_file, 'transcription': segments}
# FIXME rolling summarization
if rolling_summarization == True:
pass
# text = extract_text_from_segments(segments)
# detail = detail_level
# additional_instructions = custom_prompt_input
# chunk_text_by_words = set_chunk_txt_by_words
# max_words = set_max_txt_chunk_words
# chunk_text_by_sentences = set_chunk_txt_by_sentences
# max_sentences = set_max_txt_chunk_sentences
# chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs
# max_paragraphs = set_max_txt_chunk_paragraphs
# chunk_text_by_tokens = set_chunk_txt_by_tokens
# max_tokens = set_max_txt_chunk_tokens
# # FIXME
# summarize_recursively = rolling_summarization
# verbose = False
# model = None
# summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input,
# chunk_text_by_words,
# max_words, chunk_text_by_sentences,
# max_sentences, chunk_text_by_paragraphs,
# max_paragraphs, chunk_text_by_tokens,
# max_tokens, summarize_recursively, verbose
# )
elif api_name:
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
else:
summary = None
if summary:
# Save the summary file in the download_path directory
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
else:
logging.error(f"Failed to download video: {path}")
# FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files
# FIXME - Need to update so that chunking is fully handled.
elif chunk and path.lower().endswith('.txt'):
chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap)
if chunks:
chunks_data = {
"file_path": path,
"chunk_unit": chunk_unit,
"max_chunk_size": max_chunk_size,
"chunk_overlap": chunk_overlap,
"chunks": []
}
summaries_data = {
"file_path": path,
"summarization_method": summarize_chunks,
"summaries": []
}
for i, chunk_text in enumerate(chunks):
chunk_info = {
"chunk_id": i + 1,
"text": chunk_text
}
chunks_data["chunks"].append(chunk_info)
if summarize_chunks:
summary = None
if summarize_chunks == 'openai':
summary = summarize_with_openai(api_key, chunk_text, custom_prompt)
elif summarize_chunks == 'anthropic':
summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt)
elif summarize_chunks == 'cohere':
summary = summarize_with_cohere(api_key, chunk_text, custom_prompt)
elif summarize_chunks == 'groq':
summary = summarize_with_groq(api_key, chunk_text, custom_prompt)
elif summarize_chunks == 'local-llm':
summary = summarize_with_local_llm(chunk_text, custom_prompt)
# FIXME - Add more summarization methods as needed
if summary:
summary_info = {
"chunk_id": i + 1,
"summary": summary
}
summaries_data["summaries"].append(summary_info)
else:
logging.warning(f"Failed to generate summary for chunk {i + 1}")
# Save chunks to a single JSON file
chunks_file_path = f"{path}_chunks.json"
with open(chunks_file_path, 'w', encoding='utf-8') as f:
json.dump(chunks_data, f, ensure_ascii=False, indent=2)
logging.info(f"All chunks saved to {chunks_file_path}")
# Save summaries to a single JSON file (if summarization was performed)
if summarize_chunks:
summaries_file_path = f"{path}_summaries.json"
with open(summaries_file_path, 'w', encoding='utf-8') as f:
json.dump(summaries_data, f, ensure_ascii=False, indent=2)
logging.info(f"All summaries saved to {summaries_file_path}")
logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.")
else:
logging.error(f"Failed to chunk file {path}")
# Handle downloading of URLs from a text file or processing local video/audio files
else:
download_path, info_dict, urls_or_media_file = process_local_file(path)
if isinstance(urls_or_media_file, list):
# Text file containing URLs
for url in urls_or_media_file:
for item in urls_or_media_file:
if item.startswith(('http://', 'https://')):
info_dict, title = extract_video_info(url)
download_path = create_download_directory(title)
video_path = download_video(url, download_path, info_dict, download_video_flag)
if video_path:
if diarize:
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
else:
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
transcription_text = {'audio_file': audio_file, 'transcription': segments}
if rolling_summarization:
text = extract_text_from_segments(segments)
# FIXME
#summary = summarize_with_detail_openai(text, detail=detail)
elif api_name:
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
else:
summary = None
if summary:
# Save the summary file in the download_path directory
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
else:
logging.error(f"Failed to download video: {url}")
else:
# Video or audio or txt file
media_path = urls_or_media_file
if media_path.lower().endswith(('.txt', '.md')):
if media_path.lower().endswith('.txt'):
# Handle text file ingestion
result = ingest_text_file(media_path)
logging.info(result)
elif media_path.lower().endswith(('.mp4', '.avi', '.mov')):
if diarize:
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True)
else:
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter)
elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')):
if diarize:
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True)
else:
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter)
else:
logging.error(f"Unsupported media file format: {media_path}")
continue
transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments}
# FIXME
if rolling_summarization:
# text = extract_text_from_segments(segments)
# summary = summarize_with_detail_openai(text, detail=detail)
pass
elif api_name:
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
else:
summary = None
if summary:
# Save the summary file in the download_path directory
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
except Exception as e:
logging.error(f"Error processing {path}: {str(e)}")
continue
return transcription_text
def signal_handler(sig, frame):
logging.info('Signal handler called with signal: %s', sig)
cleanup_process()
sys.exit(0)
############################## MAIN ##############################
#
#
if __name__ == "__main__":
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Print ascii_art
print_hello()
transcription_text = None
parser = argparse.ArgumentParser(
description='Transcribe and summarize videos.',
epilog='''
Sample commands:
1. Simple Sample command structure:
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three
2. Rolling Summary Sample command structure:
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three
3. FULL Sample command structure:
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three
4. Sample command structure for UI:
summarize.py -gui -log DEBUG
''',
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
parser.add_argument('-wm', '--whisper_model', type=str, default='small',
help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, '
'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, '
'distil-small.en')
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
parser.add_argument('-log', '--log_level', type=str, default='INFO',
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface")
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
parser.add_argument('-prompt', '--custom_prompt', type=str,
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
'modify the script itself...)')
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
'defines the chunk size.\n Default is 0.01(lots '
'of chunks) -> 1.00 (few chunks)\n Currently '
'only OpenAI works. ',
default=0.01, )
parser.add_argument('-model', '--llm_model', type=str, default='',
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
parser.add_argument('--local_llm', action='store_true',
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
parser.add_argument('--server_mode', action='store_true',
help='Run in server mode (This exposes the GUI/Server to the network)')
parser.add_argument('--share_public', type=int, default=7860,
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
parser.add_argument('--ingest_text_file', action='store_true',
help='Ingest .txt files as content instead of treating them as URL lists')
parser.add_argument('--text_title', type=str, help='Title for the text file being ingested')
parser.add_argument('--text_author', type=str, help='Author of the text file being ingested')
parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization')
# parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage')
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')
args = parser.parse_args()
# Set Chunking values/variables
set_chunk_txt_by_words = False
set_max_txt_chunk_words = 0
set_chunk_txt_by_sentences = False
set_max_txt_chunk_sentences = 0
set_chunk_txt_by_paragraphs = False
set_max_txt_chunk_paragraphs = 0
set_chunk_txt_by_tokens = False
set_max_txt_chunk_tokens = 0
if args.share_public:
share_public = args.share_public
else:
share_public = None
if args.server_mode:
server_mode = args.server_mode
else:
server_mode = None
if args.server_mode is True:
server_mode = True
if args.port:
server_port = args.port
else:
server_port = None
########## Logging setup
logger = logging.getLogger()
logger.setLevel(getattr(logging, args.log_level))
# Create console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(getattr(logging, args.log_level))
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(console_formatter)
if args.log_file:
# Create file handler
file_handler = logging.FileHandler(args.log_file)
file_handler.setLevel(getattr(logging, args.log_level))
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
logger.info(f"Log file created at: {args.log_file}")
# Check if the user wants to use the local LLM from the script
local_llm = args.local_llm
logging.info(f'Local LLM flag: {local_llm}')
# Check if the user wants to ingest a text file (singular or multiple from a folder)
if args.input_path is not None:
if os.path.isdir(args.input_path) and args.ingest_text_file:
results = ingest_folder(args.input_path, keywords=args.keywords)
for result in results:
print(result)
elif args.input_path.lower().endswith('.txt') and args.ingest_text_file:
result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author,
keywords=args.keywords)
print(result)
sys.exit(0)
# Launch the GUI
# This is huggingface so:
if args.user_interface:
if local_llm:
local_llm_function()
time.sleep(2)
webbrowser.open_new_tab('http://127.0.0.1:7860')
launch_ui()
elif not args.input_path:
parser.print_help()
sys.exit(1)
else:
logging.info('Starting the transcription and summarization process.')
logging.info(f'Input path: {args.input_path}')
logging.info(f'API Name: {args.api_name}')
logging.info(f'Number of speakers: {args.num_speakers}')
logging.info(f'Whisper model: {args.whisper_model}')
logging.info(f'Offset: {args.offset}')
logging.info(f'VAD filter: {args.vad_filter}')
logging.info(f'Log Level: {args.log_level}')
logging.info(f'Demo Mode: {args.demo_mode}')
logging.info(f'Custom Prompt: {args.custom_prompt}')
logging.info(f'Overwrite: {args.overwrite}')
logging.info(f'Rolling Summarization: {args.rolling_summarization}')
logging.info(f'User Interface: {args.user_interface}')
logging.info(f'Video Download: {args.video}')
# logging.info(f'Save File location: {args.output_path}')
# logging.info(f'Log File location: {args.log_file}')
global api_name
api_name = args.api_name
########## Custom Prompt setup
custom_prompt_input = args.custom_prompt
if not args.custom_prompt:
logging.debug("No custom prompt defined, will use default")
args.custom_prompt_input = (
"\n\nabove is the transcript of a video. "
"Please read through the transcript carefully. Identify the main topics that are "
"discussed over the course of the transcript. Then, summarize the key points about each "
"main topic in a concise bullet point. The bullet points should cover the key "
"information conveyed about each topic in the video, but should be much shorter than "
"the full transcript. Please output your bullet point summary inside <bulletpoints> "
"tags."
)
print("No custom prompt defined, will use default")
custom_prompt_input = args.custom_prompt
else:
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt")
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")
summary = None # Initialize to ensure it's always defined
if args.detail_level == None:
args.detail_level = 0.01
# FIXME
# if args.api_name and args.rolling_summarization and any(
# key.startswith(args.api_name) and value is not None for key, value in api_keys.items()):
# logging.info(f'MAIN: API used: {args.api_name}')
# logging.info('MAIN: Rolling Summarization will be performed.')
elif args.api_name:
logging.info(f'MAIN: API used: {args.api_name}')
logging.info('MAIN: Summarization (not rolling) will be performed.')
else:
logging.info('No API specified. Summarization will not be performed.')
logging.debug("Platform check being performed...")
platform_check()
logging.debug("CUDA check being performed...")
cuda_check()
processing_choice = "cpu"
logging.debug("ffmpeg check being performed...")
check_ffmpeg()
# download_ffmpeg()
llm_model = args.llm_model or None
# FIXME - dirty hack
args.time_based = False
try:
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key,
num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset,
vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input,
overwrite=args.overwrite, rolling_summarization=args.rolling_summarization,
detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model,
time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words,
set_max_txt_chunk_words=set_max_txt_chunk_words,
set_chunk_txt_by_sentences=set_chunk_txt_by_sentences,
set_max_txt_chunk_sentences=set_max_txt_chunk_sentences,
set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs,
set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs,
set_chunk_txt_by_tokens=set_chunk_txt_by_tokens,
set_max_txt_chunk_tokens=set_max_txt_chunk_tokens)
logging.info('Transcription process completed.')
atexit.register(cleanup_process)
except Exception as e:
logging.error('An error occurred during the transcription process.')
logging.error(str(e))
sys.exit(1)
finally:
cleanup_process()
|