Spaces:
Running
Running
# Rag_Chat_tab.py | |
# Description: This file contains the code for the RAG Chat tab in the Gradio UI | |
# | |
# Imports | |
import logging | |
# | |
# External Imports | |
import gradio as gr | |
# | |
# Local Imports | |
from App_Function_Libraries.RAG.RAG_Libary_2 import enhanced_rag_pipeline | |
# | |
######################################################################################################################## | |
# | |
# Functions: | |
def create_rag_tab(): | |
with gr.TabItem("RAG Search"): | |
gr.Markdown("# Retrieval-Augmented Generation (RAG) Search") | |
with gr.Row(): | |
with gr.Column(): | |
search_query = gr.Textbox(label="Enter your question", placeholder="What would you like to know?") | |
keyword_filtering_checkbox = gr.Checkbox(label="Enable Keyword Filtering", value=False) | |
keywords_input = gr.Textbox( | |
label="Enter keywords (comma-separated)", | |
value="keyword1, keyword2, ...", | |
visible=False | |
) | |
keyword_instructions = gr.Markdown( | |
"Enter comma-separated keywords to filter your search results.", | |
visible=False | |
) | |
api_choice = gr.Dropdown( | |
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"], | |
label="Select API for RAG", | |
value="OpenAI" | |
) | |
search_button = gr.Button("Search") | |
with gr.Column(): | |
result_output = gr.Textbox(label="Answer", lines=10) | |
context_output = gr.Textbox(label="Context", lines=10, visible=True) | |
def toggle_keyword_filtering(checkbox_value): | |
return { | |
keywords_input: gr.update(visible=checkbox_value), | |
keyword_instructions: gr.update(visible=checkbox_value) | |
} | |
keyword_filtering_checkbox.change( | |
toggle_keyword_filtering, | |
inputs=[keyword_filtering_checkbox], | |
outputs=[keywords_input, keyword_instructions] | |
) | |
def perform_rag_search(query, keywords, api_choice): | |
if keywords == "keyword1, keyword2, ...": | |
keywords = None | |
result = enhanced_rag_pipeline(query, api_choice, keywords) | |
return result['answer'], result['context'] | |
search_button.click(perform_rag_search, inputs=[search_query, keywords_input, api_choice], outputs=[result_output, context_output]) | |
# | |
# End of file | |
######################################################################################################################## | |