Spaces:
Running
Running
# Summarization_General_Lib.py | |
######################################### | |
# General Summarization Library | |
# This library is used to perform summarization. | |
# | |
#### | |
#################### | |
# Function List | |
# | |
# 1. extract_text_from_segments(segments: List[Dict]) -> str | |
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) | |
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) | |
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) | |
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) | |
# | |
# | |
#################### | |
# Import necessary libraries | |
import json | |
import logging | |
import os | |
import time | |
from typing import Optional | |
import requests | |
from requests import RequestException | |
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text | |
from App_Function_Libraries.Chunk_Lib import semantic_chunking, rolling_summarize, recursive_summarize_chunks, \ | |
improved_chunking_process | |
from App_Function_Libraries.Diarization_Lib import combine_transcription_and_diarization | |
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \ | |
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm | |
from App_Function_Libraries.DB.DB_Manager import add_media_to_database | |
# Import Local | |
from App_Function_Libraries.Utils.Utils import load_and_log_configs, load_comprehensive_config, sanitize_filename, \ | |
clean_youtube_url, create_download_directory, is_valid_url | |
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info | |
# | |
####################################################################################################################### | |
# Function Definitions | |
# | |
config = load_comprehensive_config() | |
openai_api_key = config.get('API', 'openai_api_key', fallback=None) | |
def summarize( | |
input_data: str, | |
custom_prompt_arg: Optional[str], | |
api_name: str, | |
api_key: Optional[str], | |
temp: Optional[float], | |
system_message: Optional[str] | |
) -> str: | |
try: | |
logging.debug(f"api_name type: {type(api_name)}, value: {api_name}") | |
if api_name.lower() == "openai": | |
return summarize_with_openai(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "anthropic": | |
return summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "cohere": | |
return summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "groq": | |
return summarize_with_groq(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "huggingface": | |
return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp) | |
elif api_name.lower() == "openrouter": | |
return summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "deepseek": | |
return summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "mistral": | |
return summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "llama.cpp": | |
return summarize_with_llama(input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "kobold": | |
return summarize_with_kobold(input_data, api_key, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "ooba": | |
return summarize_with_oobabooga(input_data, api_key, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "tabbyapi": | |
return summarize_with_tabbyapi(input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "vllm": | |
return summarize_with_vllm(input_data, custom_prompt_arg, None, system_message) | |
elif api_name.lower() == "local-llm": | |
return summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message) | |
elif api_name.lower() == "huggingface": | |
return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp, )#system_message) | |
else: | |
return f"Error: Invalid API Name {api_name}" | |
except Exception as e: | |
logging.error(f"Error in summarize function: {str(e)}", exc_info=True) | |
return f"Error: {str(e)}" | |
def extract_text_from_segments(segments): | |
logging.debug(f"Segments received: {segments}") | |
logging.debug(f"Type of segments: {type(segments)}") | |
text = "" | |
if isinstance(segments, list): | |
for segment in segments: | |
logging.debug(f"Current segment: {segment}") | |
logging.debug(f"Type of segment: {type(segment)}") | |
if 'Text' in segment: | |
text += segment['Text'] + " " | |
else: | |
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") | |
else: | |
logging.warning(f"Unexpected type of 'segments': {type(segments)}") | |
return text.strip() | |
def summarize_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
loaded_config_data = load_and_log_configs() | |
try: | |
# API key validation | |
if not api_key or api_key.strip() == "": | |
logging.info("OpenAI: #1 API key not provided as parameter") | |
logging.info("OpenAI: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['openai'] | |
if not api_key or api_key.strip() == "": | |
logging.error("OpenAI: #2 API key not found or is empty") | |
return "OpenAI: API Key Not Provided/Found in Config file or is empty" | |
openai_api_key = api_key | |
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}") | |
# Input data handling | |
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}") | |
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") | |
if isinstance(input_data, str): | |
if input_data.strip().startswith('{'): | |
# It's likely a JSON string | |
logging.debug("OpenAI: Parsing provided JSON string data for summarization") | |
try: | |
data = json.loads(input_data) | |
except json.JSONDecodeError as e: | |
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}") | |
return f"OpenAI: Error parsing JSON input: {str(e)}" | |
elif os.path.isfile(input_data): | |
logging.debug("OpenAI: Loading JSON data from file for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("OpenAI: Using provided string data for summarization") | |
data = input_data | |
else: | |
data = input_data | |
logging.debug(f"OpenAI: Processed data type: {type(data)}") | |
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...") | |
# Text extraction | |
if isinstance(data, dict): | |
if 'summary' in data: | |
logging.debug("OpenAI: Summary already exists in the loaded data") | |
return data['summary'] | |
elif 'segments' in data: | |
text = extract_text_from_segments(data['segments']) | |
else: | |
text = json.dumps(data) # Convert dict to string if no specific format | |
elif isinstance(data, list): | |
text = extract_text_from_segments(data) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}") | |
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...") | |
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}") | |
openai_model = loaded_config_data['models']['openai'] or "gpt-4o" | |
logging.debug(f"OpenAI: Using model: {openai_model}") | |
headers = { | |
'Authorization': f'Bearer {openai_api_key}', | |
'Content-Type': 'application/json' | |
} | |
logging.debug( | |
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}") | |
logging.debug("openai: Preparing data + prompt for submittal") | |
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
if temp is None: | |
temp = 0.7 | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
temp = float(temp) | |
data = { | |
"model": openai_model, | |
"messages": [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": openai_prompt} | |
], | |
"max_tokens": 4096, | |
"temperature": temp | |
} | |
logging.debug("OpenAI: Posting request") | |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("OpenAI: Summarization successful") | |
logging.debug(f"OpenAI: Summary (first 500 chars): {summary[:500]}...") | |
return summary | |
else: | |
logging.warning("OpenAI: Summary not found in the response data") | |
return "OpenAI: Summary not available" | |
else: | |
logging.error(f"OpenAI: Summarization failed with status code {response.status_code}") | |
logging.error(f"OpenAI: Error response: {response.text}") | |
return f"OpenAI: Failed to process summary. Status code: {response.status_code}" | |
except json.JSONDecodeError as e: | |
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True) | |
return f"OpenAI: Error decoding JSON input: {str(e)}" | |
except requests.RequestException as e: | |
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) | |
return f"OpenAI: Error making API request: {str(e)}" | |
except Exception as e: | |
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) | |
return f"OpenAI: Unexpected error occurred: {str(e)}" | |
def summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp=None, system_message=None, max_retries=3, retry_delay=5): | |
logging.debug("Anthropic: Summarization process starting...") | |
try: | |
logging.debug("Anthropic: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
anthropic_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
anthropic_api_key = api_key | |
logging.info("Anthropic: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
anthropic_api_key = loaded_config_data['api_keys'].get('anthropic') | |
if anthropic_api_key: | |
logging.info("Anthropic: Using API key from config file") | |
else: | |
logging.warning("Anthropic: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not anthropic_api_key or not anthropic_api_key.strip(): | |
logging.error("Anthropic: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
#FIXME | |
# For example: raise ValueError("No valid Anthropic API key available") | |
logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("AnthropicAI: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("AnthropicAI: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"AnthropicAI: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"AnthropicAI: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Anthropic: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Anthropic: Invalid input data format") | |
if temp is None: | |
temp = 0.1 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
headers = { | |
'x-api-key': anthropic_api_key, | |
'anthropic-version': '2023-06-01', | |
'Content-Type': 'application/json' | |
} | |
anthropic_prompt = custom_prompt_arg | |
logging.debug(f"Anthropic: Prompt is {anthropic_prompt}") | |
user_message = { | |
"role": "user", | |
"content": f"{text} \n\n\n\n{anthropic_prompt}" | |
} | |
model = loaded_config_data['models']['anthropic'] | |
data = { | |
"model": model, | |
"max_tokens": 4096, # max _possible_ tokens to return | |
"messages": [user_message], | |
"stop_sequences": ["\n\nHuman:"], | |
"temperature": temp, | |
"top_k": 0, | |
"top_p": 1.0, | |
"metadata": { | |
"user_id": "example_user_id", | |
}, | |
"stream": False, | |
"system": system_message | |
} | |
for attempt in range(max_retries): | |
try: | |
logging.debug("anthropic: Posting request to API") | |
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) | |
# Check if the status code indicates success | |
if response.status_code == 200: | |
logging.debug("anthropic: Post submittal successful") | |
response_data = response.json() | |
try: | |
summary = response_data['content'][0]['text'].strip() | |
logging.debug("anthropic: Summarization successful") | |
print("Summary processed successfully.") | |
return summary | |
except (IndexError, KeyError) as e: | |
logging.debug("anthropic: Unexpected data in response") | |
print("Unexpected response format from Anthropic API:", response.text) | |
return None | |
elif response.status_code == 500: # Handle internal server error specifically | |
logging.debug("anthropic: Internal server error") | |
print("Internal server error from API. Retrying may be necessary.") | |
time.sleep(retry_delay) | |
else: | |
logging.debug( | |
f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return None | |
except RequestException as e: | |
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") | |
if attempt < max_retries - 1: | |
time.sleep(retry_delay) | |
else: | |
return f"anthropic: Network error: {str(e)}" | |
except FileNotFoundError as e: | |
logging.error(f"anthropic: File not found: {input_data}") | |
return f"anthropic: File not found: {input_data}" | |
except json.JSONDecodeError as e: | |
logging.error(f"anthropic: Invalid JSON format in file: {input_data}") | |
return f"anthropic: Invalid JSON format in file: {input_data}" | |
except Exception as e: | |
logging.error(f"anthropic: Error in processing: {str(e)}") | |
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" | |
# Summarize with Cohere | |
def summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
logging.debug("Cohere: Summarization process starting...") | |
try: | |
logging.debug("Cohere: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
cohere_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
cohere_api_key = api_key | |
logging.info("Cohere: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
cohere_api_key = loaded_config_data['api_keys'].get('cohere') | |
if cohere_api_key: | |
logging.info("Cohere: Using API key from config file") | |
else: | |
logging.warning("Cohere: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not cohere_api_key or not cohere_api_key.strip(): | |
logging.error("Cohere: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
# FIXME | |
# For example: raise ValueError("No valid Anthropic API key available") | |
if custom_prompt_arg is None: | |
custom_prompt_arg = "" | |
if system_message is None: | |
system_message = "" | |
logging.debug(f"Cohere: Using API Key: {cohere_api_key[:5]}...{cohere_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Cohere: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Cohere: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"Cohere: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"Cohere: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Cohere: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
cohere_model = loaded_config_data['models']['cohere'] | |
if temp is None: | |
temp = 0.3 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
'Authorization': f'Bearer {cohere_api_key}' | |
} | |
cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
logging.debug(f"cohere: Prompt being sent is {cohere_prompt}") | |
data = { | |
"preamble": system_message, | |
"message": cohere_prompt, | |
"model": cohere_model, | |
# "connectors": [{"id": "web-search"}], | |
"temperature": temp | |
} | |
logging.debug("cohere: Submitting request to API endpoint") | |
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'text' in response_data: | |
summary = response_data['text'].strip() | |
logging.debug("cohere: Summarization successful") | |
print("Summary processed successfully.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return f"cohere: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("cohere: Error in processing: %s", str(e)) | |
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" | |
# https://console.groq.com/docs/quickstart | |
def summarize_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
logging.debug("Groq: Summarization process starting...") | |
try: | |
logging.debug("Groq: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
groq_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
groq_api_key = api_key | |
logging.info("Groq: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
groq_api_key = loaded_config_data['api_keys'].get('groq') | |
if groq_api_key: | |
logging.info("Groq: Using API key from config file") | |
else: | |
logging.warning("Groq: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not groq_api_key or not groq_api_key.strip(): | |
logging.error("Anthropic: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
# FIXME | |
# For example: raise ValueError("No valid Anthropic API key available") | |
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}") | |
# Transcript data handling & Validation | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Groq: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Groq: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"Groq: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Groq: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Groq: Invalid input data format") | |
# Set the model to be used | |
groq_model = loaded_config_data['models']['groq'] | |
if temp is None: | |
temp = 0.2 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
headers = { | |
'Authorization': f'Bearer {groq_api_key}', | |
'Content-Type': 'application/json' | |
} | |
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
logging.debug("groq: Prompt being sent is {groq_prompt}") | |
data = { | |
"messages": [ | |
{ | |
"role": "system", | |
"content": system_message, | |
}, | |
{ | |
"role": "user", | |
"content": groq_prompt, | |
} | |
], | |
"model": groq_model, | |
"temperature": temp | |
} | |
logging.debug("groq: Submitting request to API endpoint") | |
print("groq: Submitting request to API endpoint") | |
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("groq: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") | |
return f"groq: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("groq: Error in processing: %s", str(e)) | |
return f"groq: Error occurred while processing summary with groq: {str(e)}" | |
def summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
import requests | |
import json | |
global openrouter_model, openrouter_api_key | |
try: | |
logging.debug("OpenRouter: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
openrouter_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
openrouter_api_key = api_key | |
logging.info("OpenRouter: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter') | |
if openrouter_api_key: | |
logging.info("OpenRouter: Using API key from config file") | |
else: | |
logging.warning("OpenRouter: No API key found in config file") | |
# Model Selection validation | |
logging.debug("OpenRouter: Validating model selection") | |
loaded_config_data = load_and_log_configs() | |
openrouter_model = loaded_config_data['models']['openrouter'] | |
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}") | |
# Final check to ensure we have a valid API key | |
if not openrouter_api_key or not openrouter_api_key.strip(): | |
logging.error("OpenRouter: No valid API key available") | |
raise ValueError("No valid Anthropic API key available") | |
except Exception as e: | |
logging.error("OpenRouter: Error in processing: %s", str(e)) | |
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}" | |
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}") | |
logging.debug(f"OpenRouter: Using Model: {openrouter_model}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("OpenRouter: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("OpenRouter: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"OpenRouter: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("OpenRouter: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("OpenRouter: Invalid input data format") | |
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}" | |
if temp is None: | |
temp = 0.1 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
try: | |
logging.debug("OpenRouter: Submitting request to API endpoint") | |
print("OpenRouter: Submitting request to API endpoint") | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={ | |
"Authorization": f"Bearer {openrouter_api_key}", | |
}, | |
data=json.dumps({ | |
"model": openrouter_model, | |
"messages": [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": openrouter_prompt} | |
], | |
"temperature": temp | |
}) | |
) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("openrouter: Summarization successful") | |
print("openrouter: Summarization successful.") | |
return summary | |
else: | |
logging.error("openrouter: Expected data not found in API response.") | |
return "openrouter: Expected data not found in API response." | |
else: | |
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") | |
return f"openrouter: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("openrouter: Error in processing: %s", str(e)) | |
return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}" | |
def summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp=None): | |
loaded_config_data = load_and_log_configs() | |
global huggingface_api_key | |
logging.debug("HuggingFace: Summarization process starting...") | |
try: | |
logging.debug("HuggingFace: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
huggingface_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
huggingface_api_key = api_key | |
logging.info("HuggingFace: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
huggingface_api_key = loaded_config_data['api_keys'].get('huggingface') | |
if huggingface_api_key: | |
logging.info("HuggingFace: Using API key from config file") | |
else: | |
logging.warning("HuggingFace: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not huggingface_api_key or not huggingface_api_key.strip(): | |
logging.error("HuggingFace: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
# FIXME | |
# For example: raise ValueError("No valid Anthropic API key available") | |
logging.debug(f"HuggingFace: Using API Key: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("HuggingFace: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("HuggingFace: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"HuggingFace: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"HuggingFace: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("HuggingFace: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("HuggingFace: Invalid input data format") | |
headers = { | |
"Authorization": f"Bearer {huggingface_api_key}" | |
} | |
huggingface_model = loaded_config_data['models']['huggingface'] | |
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}" | |
if temp is None: | |
temp = 0.1 | |
temp = float(temp) | |
huggingface_prompt = f"{text}\n\n\n\n{custom_prompt_arg}" | |
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}") | |
data = { | |
"inputs": text, | |
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed | |
} | |
logging.debug("huggingface: Submitting request...") | |
response = requests.post(API_URL, headers=headers, json=data) | |
if response.status_code == 200: | |
summary = response.json()[0]['generated_text'].strip() | |
logging.debug("huggingface: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") | |
return f"Failed to process summary, status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("huggingface: Error in processing: %s", str(e)) | |
print(f"Error occurred while processing summary with huggingface: {str(e)}") | |
return None | |
def summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
logging.debug("DeepSeek: Summarization process starting...") | |
try: | |
logging.debug("DeepSeek: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
deepseek_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
deepseek_api_key = api_key | |
logging.info("DeepSeek: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek') | |
if deepseek_api_key: | |
logging.info("DeepSeek: Using API key from config file") | |
else: | |
logging.warning("DeepSeek: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not deepseek_api_key or not deepseek_api_key.strip(): | |
logging.error("DeepSeek: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
# FIXME | |
# For example: raise ValueError("No valid deepseek API key available") | |
logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}") | |
# Input data handling | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("DeepSeek: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("DeepSeek: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"DeepSeek: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("DeepSeek: Summary already exists in the loaded data") | |
return data['summary'] | |
# Text extraction | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("DeepSeek: Invalid input data format") | |
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat" | |
if temp is None: | |
temp = 0.1 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
logging.debug( | |
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}") | |
logging.debug("openai: Preparing data + prompt for submittal") | |
deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
data = { | |
"model": deepseek_model, | |
"messages": [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": deepseek_prompt} | |
], | |
"stream": False, | |
"temperature": temp | |
} | |
logging.debug("DeepSeek: Posting request") | |
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("DeepSeek: Summarization successful") | |
return summary | |
else: | |
logging.warning("DeepSeek: Summary not found in the response data") | |
return "DeepSeek: Summary not available" | |
else: | |
logging.error(f"DeepSeek: Summarization failed with status code {response.status_code}") | |
logging.error(f"DeepSeek: Error response: {response.text}") | |
return f"DeepSeek: Failed to process summary. Status code: {response.status_code}" | |
except Exception as e: | |
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True) | |
return f"DeepSeek: Error occurred while processing summary: {str(e)}" | |
def summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): | |
logging.debug("Mistral: Summarization process starting...") | |
try: | |
logging.debug("Mistral: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
mistral_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
mistral_api_key = api_key | |
logging.info("Mistral: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
mistral_api_key = loaded_config_data['api_keys'].get('mistral') | |
if mistral_api_key: | |
logging.info("Mistral: Using API key from config file") | |
else: | |
logging.warning("Mistral: No API key found in config file") | |
# Final check to ensure we have a valid API key | |
if not mistral_api_key or not mistral_api_key.strip(): | |
logging.error("Mistral: No valid API key available") | |
# You might want to raise an exception here or handle this case as appropriate for your application | |
# FIXME | |
# For example: raise ValueError("No valid deepseek API key available") | |
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}") | |
# Input data handling | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Mistral: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Mistral: Using provided string data for summarization") | |
data = input_data | |
# DEBUG - Debug logging to identify sent data | |
logging.debug(f"Mistral: Loaded data: {data[:500]}...(snipped to first 500 chars)") | |
logging.debug(f"Mistral: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Mistral: Summary already exists in the loaded data") | |
return data['summary'] | |
# Text extraction | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Mistral: Invalid input data format") | |
mistral_model = loaded_config_data['models']['mistral'] or "mistral-large-latest" | |
if temp is None: | |
temp = 0.2 | |
temp = float(temp) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant who does whatever the user requests." | |
headers = { | |
'Authorization': f'Bearer {mistral_api_key}', | |
'Content-Type': 'application/json' | |
} | |
logging.debug( | |
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}") | |
logging.debug("Mistral: Preparing data + prompt for submittal") | |
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} " | |
data = { | |
"model": mistral_model, | |
"messages": [ | |
{"role": "system", | |
"content": system_message}, | |
{"role": "user", | |
"content": mistral_prompt} | |
], | |
"temperature": temp, | |
"top_p": 1, | |
"max_tokens": 4096, | |
"stream": "false", | |
"safe_prompt": "false" | |
} | |
logging.debug("Mistral: Posting request") | |
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("Mistral: Summarization successful") | |
return summary | |
else: | |
logging.warning("Mistral: Summary not found in the response data") | |
return "Mistral: Summary not available" | |
else: | |
logging.error(f"Mistral: Summarization failed with status code {response.status_code}") | |
logging.error(f"Mistral: Error response: {response.text}") | |
return f"Mistral: Failed to process summary. Status code: {response.status_code}" | |
except Exception as e: | |
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True) | |
return f"Mistral: Error occurred while processing summary: {str(e)}" | |
# | |
# | |
####################################################################################################################### | |
# | |
# | |
# Gradio File Processing | |
# Handle multiple videos as input | |
def process_video_urls(url_list, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, | |
download_video_flag, download_audio, rolling_summarization, detail_level, question_box, | |
keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, | |
chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, | |
semantic_chunk_size, semantic_chunk_overlap, recursive_summarization): | |
global current_progress | |
progress = [] # This must always be a list | |
status = [] # This must always be a list | |
if custom_prompt_input is None: | |
custom_prompt_input = """ | |
You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes. | |
**Bulleted Note Creation Guidelines** | |
**Headings**: | |
- Based on referenced topics, not categories like quotes or terms | |
- Surrounded by **bold** formatting | |
- Not listed as bullet points | |
- No space between headings and list items underneath | |
**Emphasis**: | |
- **Important terms** set in bold font | |
- **Text ending in a colon**: also bolded | |
**Review**: | |
- Ensure adherence to specified format | |
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]""" | |
def update_progress(index, url, message): | |
progress.append(f"Processing {index + 1}/{len(url_list)}: {url}") # Append to list | |
status.append(message) # Append to list | |
return "\n".join(progress), "\n".join(status) # Return strings for display | |
for index, url in enumerate(url_list): | |
try: | |
logging.info(f"Starting to process video {index + 1}/{len(url_list)}: {url}") | |
transcription, summary, json_file_path, summary_file_path, _, _ = process_url(url=url, | |
num_speakers=num_speakers, | |
whisper_model=whisper_model, | |
custom_prompt_input=custom_prompt_input, | |
offset=offset, | |
api_name=api_name, | |
api_key=api_key, | |
vad_filter=vad_filter, | |
download_video_flag=download_video_flag, | |
download_audio=download_audio, | |
rolling_summarization=rolling_summarization, | |
detail_level=detail_level, | |
question_box=question_box, | |
keywords=keywords, | |
chunk_text_by_words=chunk_text_by_words, | |
max_words=max_words, | |
chunk_text_by_sentences=chunk_text_by_sentences, | |
max_sentences=max_sentences, | |
chunk_text_by_paragraphs=chunk_text_by_paragraphs, | |
max_paragraphs=max_paragraphs, | |
chunk_text_by_tokens=chunk_text_by_tokens, | |
max_tokens=max_tokens, | |
chunk_by_semantic=chunk_by_semantic, | |
semantic_chunk_size=semantic_chunk_size, | |
semantic_chunk_overlap=semantic_chunk_overlap, | |
recursive_summarization=recursive_summarization) | |
# Update progress and transcription properly | |
current_progress, current_status = update_progress(index, url, "Video processed and ingested into the database.") | |
logging.info(f"Successfully processed video {index + 1}/{len(url_list)}: {url}") | |
time.sleep(1) | |
except Exception as e: | |
logging.error(f"Error processing video {index + 1}/{len(url_list)}: {url}") | |
logging.error(f"Error details: {str(e)}") | |
current_progress, current_status = update_progress(index, url, f"Error: {str(e)}") | |
yield current_progress, current_status, None, None, None, None | |
success_message = "All videos have been transcribed, summarized, and ingested into the database successfully." | |
return current_progress, success_message, None, None, None, None | |
def perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=False): | |
global segments_json_path | |
audio_file_path = convert_to_wav(video_path, offset) | |
segments_json_path = audio_file_path.replace('.wav', '.segments.json') | |
if diarize: | |
diarized_json_path = audio_file_path.replace('.wav', '.diarized.json') | |
# Check if diarized JSON already exists | |
if os.path.exists(diarized_json_path): | |
logging.info(f"Diarized file already exists: {diarized_json_path}") | |
try: | |
with open(diarized_json_path, 'r') as file: | |
diarized_segments = json.load(file) | |
if not diarized_segments: | |
logging.warning(f"Diarized JSON file is empty, re-generating: {diarized_json_path}") | |
raise ValueError("Empty diarized JSON file") | |
logging.debug(f"Loaded diarized segments from {diarized_json_path}") | |
return audio_file_path, diarized_segments | |
except (json.JSONDecodeError, ValueError) as e: | |
logging.error(f"Failed to read or parse the diarized JSON file: {e}") | |
os.remove(diarized_json_path) | |
# If diarized file doesn't exist or was corrupted, generate new diarized transcription | |
logging.info(f"Generating diarized transcription for {audio_file_path}") | |
diarized_segments = combine_transcription_and_diarization(audio_file_path) | |
# Save diarized segments | |
with open(diarized_json_path, 'w') as file: | |
json.dump(diarized_segments, file, indent=2) | |
return audio_file_path, diarized_segments | |
# Non-diarized transcription (existing functionality) | |
if os.path.exists(segments_json_path): | |
logging.info(f"Segments file already exists: {segments_json_path}") | |
try: | |
with open(segments_json_path, 'r') as file: | |
segments = json.load(file) | |
if not segments: | |
logging.warning(f"Segments JSON file is empty, re-generating: {segments_json_path}") | |
raise ValueError("Empty segments JSON file") | |
logging.debug(f"Loaded segments from {segments_json_path}") | |
except (json.JSONDecodeError, ValueError) as e: | |
logging.error(f"Failed to read or parse the segments JSON file: {e}") | |
os.remove(segments_json_path) | |
logging.info(f"Re-generating transcription for {audio_file_path}") | |
audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter) | |
if segments is None: | |
return None, None | |
else: | |
audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter) | |
return audio_file_path, segments | |
def re_generate_transcription(audio_file_path, whisper_model, vad_filter): | |
try: | |
segments = speech_to_text(audio_file_path, whisper_model=whisper_model, vad_filter=vad_filter) | |
# Save segments to JSON | |
with open(segments_json_path, 'w') as file: | |
json.dump(segments, file, indent=2) | |
logging.debug(f"Transcription segments saved to {segments_json_path}") | |
return audio_file_path, segments | |
except Exception as e: | |
logging.error(f"Error in re-generating transcription: {str(e)}") | |
return None, None | |
def save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict): | |
try: | |
video_title = sanitize_filename(info_dict.get('title', 'Untitled')) | |
# Save transcription | |
transcription_file_path = os.path.join(download_path, f"{video_title}_transcription.txt") | |
with open(transcription_file_path, 'w', encoding='utf-8') as f: | |
f.write(transcription_text) | |
# Save summary if available | |
summary_file_path = None | |
if summary_text: | |
summary_file_path = os.path.join(download_path, f"{video_title}_summary.txt") | |
with open(summary_file_path, 'w', encoding='utf-8') as f: | |
f.write(summary_text) | |
return transcription_file_path, summary_file_path | |
except Exception as e: | |
logging.error(f"Error in save_transcription_and_summary: {str(e)}", exc_info=True) | |
return None, None | |
def summarize_chunk(api_name, text, custom_prompt_input, api_key, temp=None, system_message=None): | |
logging.debug("Entered 'summarize_chunk' function") | |
try: | |
result = summarize(text, custom_prompt_input, api_name, api_key, temp, system_message) | |
if result is None or result.startswith("Error:"): | |
logging.warning(f"Summarization with {api_name} failed: {result}") | |
return None | |
logging.info(f"Summarization with {api_name} successful") | |
return result | |
except Exception as e: | |
logging.error(f"Error in summarize_chunk with {api_name}: {str(e)}", exc_info=True) | |
return None | |
def extract_metadata_and_content(input_data): | |
metadata = {} | |
content = "" | |
if isinstance(input_data, str): | |
if os.path.exists(input_data): | |
with open(input_data, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
else: | |
try: | |
data = json.loads(input_data) | |
except json.JSONDecodeError: | |
return {}, input_data | |
elif isinstance(input_data, dict): | |
data = input_data | |
else: | |
return {}, str(input_data) | |
# Extract metadata | |
metadata['title'] = data.get('title', 'No title available') | |
metadata['author'] = data.get('author', 'Unknown author') | |
# Extract content | |
if 'transcription' in data: | |
content = extract_text_from_segments(data['transcription']) | |
elif 'segments' in data: | |
content = extract_text_from_segments(data['segments']) | |
elif 'content' in data: | |
content = data['content'] | |
else: | |
content = json.dumps(data) | |
return metadata, content | |
def format_input_with_metadata(metadata, content): | |
formatted_input = f"Title: {metadata.get('title', 'No title available')}\n" | |
formatted_input += f"Author: {metadata.get('author', 'Unknown author')}\n\n" | |
formatted_input += content | |
return formatted_input | |
def perform_summarization(api_name, input_data, custom_prompt_input, api_key, recursive_summarization=False, temp=None, system_message=None): | |
loaded_config_data = load_and_log_configs() | |
logging.info("Starting summarization process...") | |
if system_message is None: | |
system_message = """ | |
You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes. | |
**Bulleted Note Creation Guidelines** | |
**Headings**: | |
- Based on referenced topics, not categories like quotes or terms | |
- Surrounded by **bold** formatting | |
- Not listed as bullet points | |
- No space between headings and list items underneath | |
**Emphasis**: | |
- **Important terms** set in bold font | |
- **Text ending in a colon**: also bolded | |
**Review**: | |
- Ensure adherence to specified format | |
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]""" | |
try: | |
logging.debug(f"Input data type: {type(input_data)}") | |
logging.debug(f"Input data (first 500 chars): {str(input_data)[:500]}...") | |
# Extract metadata and content | |
metadata, content = extract_metadata_and_content(input_data) | |
logging.debug(f"Extracted metadata: {metadata}") | |
logging.debug(f"Extracted content (first 500 chars): {content[:500]}...") | |
# Prepare a structured input for summarization | |
structured_input = format_input_with_metadata(metadata, content) | |
# Perform summarization on the structured input | |
if recursive_summarization: | |
chunk_options = { | |
'method': 'words', # or 'sentences', 'paragraphs', 'tokens' based on your preference | |
'max_size': 1000, # adjust as needed | |
'overlap': 100, # adjust as needed | |
'adaptive': False, | |
'multi_level': False, | |
'language': 'english' | |
} | |
chunks = improved_chunking_process(structured_input, chunk_options) | |
logging.debug(f"Chunking process completed. Number of chunks: {len(chunks)}") | |
logging.debug("Now performing recursive summarization on each chunk...") | |
logging.debug("summary = recursive_summarize_chunks") | |
summary = recursive_summarize_chunks([chunk['text'] for chunk in chunks], | |
lambda x: summarize_chunk(api_name, x, custom_prompt_input, api_key), | |
custom_prompt_input, temp, system_message) | |
else: | |
logging.debug("summary = summarize_chunk") | |
summary = summarize_chunk(api_name, structured_input, custom_prompt_input, api_key, temp, system_message) | |
# add some actual validation logic | |
if summary is not None: | |
logging.info(f"Summary generated using {api_name} API") | |
if isinstance(input_data, str) and os.path.exists(input_data): | |
summary_file_path = input_data.replace('.json', '_summary.txt') | |
with open(summary_file_path, 'w', encoding='utf-8') as file: | |
file.write(summary) | |
else: | |
logging.warning(f"Failed to generate summary using {api_name} API") | |
logging.info("Summarization completed successfully.") | |
return summary | |
except requests.exceptions.ConnectionError: | |
logging.error("Connection error while summarizing") | |
except Exception as e: | |
logging.error(f"Error summarizing with {api_name}: {str(e)}", exc_info=True) | |
return f"An error occurred during summarization: {str(e)}" | |
return None | |
def extract_text_from_input(input_data): | |
if isinstance(input_data, str): | |
try: | |
# Try to parse as JSON | |
data = json.loads(input_data) | |
except json.JSONDecodeError: | |
# If not valid JSON, treat as plain text | |
return input_data | |
elif isinstance(input_data, dict): | |
data = input_data | |
else: | |
return str(input_data) | |
# Extract relevant fields from the JSON object | |
text_parts = [] | |
if 'title' in data: | |
text_parts.append(f"Title: {data['title']}") | |
if 'description' in data: | |
text_parts.append(f"Description: {data['description']}") | |
if 'transcription' in data: | |
if isinstance(data['transcription'], list): | |
transcription_text = ' '.join([segment.get('Text', '') for segment in data['transcription']]) | |
elif isinstance(data['transcription'], str): | |
transcription_text = data['transcription'] | |
else: | |
transcription_text = str(data['transcription']) | |
text_parts.append(f"Transcription: {transcription_text}") | |
elif 'segments' in data: | |
segments_text = extract_text_from_segments(data['segments']) | |
text_parts.append(f"Segments: {segments_text}") | |
return '\n\n'.join(text_parts) | |
def process_url( | |
url, | |
num_speakers, | |
whisper_model, | |
custom_prompt_input, | |
offset, | |
api_name, | |
api_key, | |
vad_filter, | |
download_video_flag, | |
download_audio, | |
rolling_summarization, | |
detail_level, | |
# It's for the asking a question about a returned prompt - needs to be removed #FIXME | |
question_box, | |
keywords, | |
chunk_text_by_words, | |
max_words, | |
chunk_text_by_sentences, | |
max_sentences, | |
chunk_text_by_paragraphs, | |
max_paragraphs, | |
chunk_text_by_tokens, | |
max_tokens, | |
chunk_by_semantic, | |
semantic_chunk_size, | |
semantic_chunk_overlap, | |
local_file_path=None, | |
diarize=False, | |
recursive_summarization=False, | |
temp=None, | |
system_message=None): | |
# Handle the chunk summarization options | |
set_chunk_txt_by_words = chunk_text_by_words | |
set_max_txt_chunk_words = max_words | |
set_chunk_txt_by_sentences = chunk_text_by_sentences | |
set_max_txt_chunk_sentences = max_sentences | |
set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs | |
set_max_txt_chunk_paragraphs = max_paragraphs | |
set_chunk_txt_by_tokens = chunk_text_by_tokens | |
set_max_txt_chunk_tokens = max_tokens | |
set_chunk_txt_by_semantic = chunk_by_semantic | |
set_semantic_chunk_size = semantic_chunk_size | |
set_semantic_chunk_overlap = semantic_chunk_overlap | |
progress = [] | |
success_message = "All videos processed successfully. Transcriptions and summaries have been ingested into the database." | |
# Validate input | |
if not url and not local_file_path: | |
return "Process_URL: No URL provided.", "No URL provided.", None, None, None, None, None, None | |
if isinstance(url, str): | |
urls = url.strip().split('\n') | |
if len(urls) > 1: | |
return process_video_urls(urls, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, | |
download_video_flag, download_audio, rolling_summarization, detail_level, question_box, | |
keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, | |
chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, semantic_chunk_size, semantic_chunk_overlap, recursive_summarization) | |
else: | |
urls = [url] | |
if url and not is_valid_url(url): | |
return "Process_URL: Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None | |
if url: | |
# Clean the URL to remove playlist parameters if any | |
url = clean_youtube_url(url) | |
logging.info(f"Process_URL: Processing URL: {url}") | |
if api_name: | |
print("Process_URL: API Name received:", api_name) # Debugging line | |
video_file_path = None | |
global info_dict | |
# If URL/Local video file is provided | |
try: | |
info_dict, title = extract_video_info(url) | |
download_path = create_download_directory(title) | |
current_whsiper_model = whisper_model | |
video_path = download_video(url, download_path, info_dict, download_video_flag, current_whsiper_model) | |
global segments | |
audio_file_path, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
if diarize: | |
transcription_text = combine_transcription_and_diarization(audio_file_path) | |
else: | |
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
if audio_file_path is None or segments is None: | |
logging.error("Process_URL: Transcription failed or segments not available.") | |
return "Process_URL: Transcription failed.", "Transcription failed.", None, None, None, None | |
logging.debug(f"Process_URL: Transcription audio_file: {audio_file_path}") | |
logging.debug(f"Process_URL: Transcription segments: {segments}") | |
logging.debug(f"Process_URL: Transcription text: {transcription_text}") | |
# FIXME - Implement chunking calls here | |
# Implement chunking calls here | |
chunked_transcriptions = [] | |
if chunk_text_by_words: | |
chunked_transcriptions = chunk_text_by_words(transcription_text['transcription'], max_words) | |
elif chunk_text_by_sentences: | |
chunked_transcriptions = chunk_text_by_sentences(transcription_text['transcription'], max_sentences) | |
elif chunk_text_by_paragraphs: | |
chunked_transcriptions = chunk_text_by_paragraphs(transcription_text['transcription'], max_paragraphs) | |
elif chunk_text_by_tokens: | |
chunked_transcriptions = chunk_text_by_tokens(transcription_text['transcription'], max_tokens) | |
elif chunk_by_semantic: | |
chunked_transcriptions = semantic_chunking(transcription_text['transcription'], semantic_chunk_size, 'tokens') | |
# If we did chunking, we now have the chunked transcripts in 'chunked_transcriptions' | |
elif rolling_summarization: | |
# FIXME - rolling summarization | |
# text = extract_text_from_segments(segments) | |
# summary_text = rolling_summarize_function( | |
# transcription_text, | |
# detail=detail_level, | |
# api_name=api_name, | |
# api_key=api_key, | |
# custom_prompt_input=custom_prompt_input, | |
# chunk_by_words=chunk_text_by_words, | |
# max_words=max_words, | |
# chunk_by_sentences=chunk_text_by_sentences, | |
# max_sentences=max_sentences, | |
# chunk_by_paragraphs=chunk_text_by_paragraphs, | |
# max_paragraphs=max_paragraphs, | |
# chunk_by_tokens=chunk_text_by_tokens, | |
# max_tokens=max_tokens | |
# ) | |
pass | |
else: | |
pass | |
summarized_chunk_transcriptions = [] | |
if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic and api_name: | |
# Perform summarization based on chunks | |
for chunk in chunked_transcriptions: | |
summarized_chunks = [] | |
if api_name == "anthropic": | |
summary = summarize_with_anthropic(api_key, chunk, custom_prompt_input) | |
elif api_name == "cohere": | |
summary = summarize_with_cohere(api_key, chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "openai": | |
summary = summarize_with_openai(api_key, chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "Groq": | |
summary = summarize_with_groq(api_key, chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "DeepSeek": | |
summary = summarize_with_deepseek(api_key, chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "OpenRouter": | |
summary = summarize_with_openrouter(api_key, chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "Llama.cpp": | |
summary = summarize_with_llama(chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "Kobold": | |
summary = summarize_with_kobold(chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "Ooba": | |
summary = summarize_with_oobabooga(chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "Tabbyapi": | |
summary = summarize_with_tabbyapi(chunk, custom_prompt_input, temp, system_message) | |
elif api_name == "VLLM": | |
summary = summarize_with_vllm(chunk, custom_prompt_input, temp, system_message) | |
summarized_chunk_transcriptions.append(summary) | |
# Combine chunked transcriptions into a single file | |
combined_transcription_text = '\n\n'.join(chunked_transcriptions) | |
combined_transcription_file_path = os.path.join(download_path, 'combined_transcription.txt') | |
with open(combined_transcription_file_path, 'w') as f: | |
f.write(combined_transcription_text) | |
# Combine summarized chunk transcriptions into a single file | |
combined_summary_text = '\n\n'.join(summarized_chunk_transcriptions) | |
combined_summary_file_path = os.path.join(download_path, 'combined_summary.txt') | |
with open(combined_summary_file_path, 'w') as f: | |
f.write(combined_summary_text) | |
# Handle rolling summarization | |
if rolling_summarization: | |
summary_text = rolling_summarize( | |
text=extract_text_from_segments(segments), | |
detail=detail_level, | |
model='gpt-4-turbo', | |
additional_instructions=custom_prompt_input, | |
summarize_recursively=recursive_summarization | |
) | |
elif api_name: | |
summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key, | |
recursive_summarization, temp=None) | |
else: | |
summary_text = 'Summary not available' | |
# Check to see if chunking was performed, and if so, return that instead | |
if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic: | |
# Combine chunked transcriptions into a single file | |
# FIXME - validate this works.... | |
json_file_path, summary_file_path = save_transcription_and_summary(combined_transcription_file_path, combined_summary_file_path, download_path, info_dict) | |
add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model) | |
return transcription_text, summary_text, json_file_path, summary_file_path, None, None | |
else: | |
json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict) | |
add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model) | |
return transcription_text, summary_text, json_file_path, summary_file_path, None, None | |
except Exception as e: | |
logging.error(f": {e}") | |
return str(e), 'process_url: Error processing the request.', None, None, None, None | |
# | |
# | |
############################################################################################################################################ | |