Spaces:
Running
Running
# Local_Summarization_Lib.py | |
######################################### | |
# Local Summarization Library | |
# This library is used to perform summarization with a 'local' inference engine. | |
# | |
#### | |
# | |
#################### | |
# Function List | |
# FIXME - UPDATE Function Arguments | |
# 1. summarize_with_local_llm(text, custom_prompt_arg) | |
# 2. summarize_with_llama(api_url, text, token, custom_prompt) | |
# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt) | |
# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt) | |
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) | |
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) | |
# 7. save_summary_to_file(summary, file_path) | |
# | |
############################### | |
# Import necessary libraries | |
import json | |
import logging | |
import os | |
import requests | |
# Import 3rd-party Libraries | |
from openai import OpenAI | |
# Import Local | |
from App_Function_Libraries.Utils import load_and_log_configs | |
from App_Function_Libraries.Utils import extract_text_from_segments | |
# | |
####################################################################################################################### | |
# Function Definitions | |
# | |
logger = logging.getLogger() | |
# Dirty hack for vLLM | |
openai_api_key = "Fake_key" | |
client = OpenAI(api_key=openai_api_key) | |
def summarize_with_local_llm(input_data, custom_prompt_arg): | |
try: | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Local LLM: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("openai: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Local LLM: Loaded data: {data}") | |
logging.debug(f"Local LLM: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Local LLM: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
logging.debug("Local LLM: Preparing data + prompt for submittal") | |
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
data = { | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "You are a professional summarizer." | |
}, | |
{ | |
"role": "user", | |
"content": local_llm_prompt | |
} | |
], | |
"max_tokens": 28000, # Adjust tokens as needed | |
} | |
logging.debug("Local LLM: Posting request") | |
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("Local LLM: Summarization successful") | |
print("Local LLM: Summarization successful.") | |
return summary | |
else: | |
logging.warning("Local LLM: Summary not found in the response data") | |
return "Local LLM: Summary not available" | |
else: | |
logging.debug("Local LLM: Summarization failed") | |
print("Local LLM: Failed to process summary:", response.text) | |
return "Local LLM: Failed to process summary" | |
except Exception as e: | |
logging.debug("Local LLM: Error in processing: %s", str(e)) | |
print("Error occurred while processing summary with Local LLM:", str(e)) | |
return "Local LLM: Error occurred while processing summary" | |
def summarize_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None): | |
loaded_config_data = load_and_log_configs() | |
try: | |
# API key validation | |
if api_key is None: | |
logging.info("llama.cpp: API key not provided as parameter") | |
logging.info("llama.cpp: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['llama'] | |
if api_key is None or api_key.strip() == "": | |
logging.info("llama.cpp: API key not found or is empty") | |
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}") | |
# Load transcript | |
logging.debug("llama.cpp: Loading JSON data") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Llama.cpp: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Llama.cpp: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Llama.cpp: Loaded data: {data}") | |
logging.debug(f"Llama.cpp: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Llama.cpp: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Llama.cpp: Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
if len(api_key) > 5: | |
headers['Authorization'] = f'Bearer {api_key}' | |
llama_prompt = f"{text} \n\n\n\n{custom_prompt}" | |
logging.debug("llama: Prompt being sent is {llama_prompt}") | |
data = { | |
"prompt": llama_prompt | |
} | |
logging.debug("llama: Submitting request to API endpoint") | |
print("llama: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
# if 'X' in response_data: | |
logging.debug(response_data) | |
summary = response_data['content'].strip() | |
logging.debug("llama: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}") | |
return f"Llama: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("Llama: Error in processing: %s", str(e)) | |
return f"Llama: Error occurred while processing summary with llama: {str(e)}" | |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate | |
def summarize_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_IP="http://127.0.0.1:5001/api/v1/generate"): | |
loaded_config_data = load_and_log_configs() | |
try: | |
# API key validation | |
if api_key is None: | |
logging.info("Kobold.cpp: API key not provided as parameter") | |
logging.info("Kobold.cpp: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['kobold'] | |
if api_key is None or api_key.strip() == "": | |
logging.info("Kobold.cpp: API key not found or is empty") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Kobold.cpp: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Kobold.cpp: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Kobold.cpp: Loaded data: {data}") | |
logging.debug(f"Kobold.cpp: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Kobold.cpp: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Kobold.cpp: Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
kobold_prompt = f"{text} \n\n\n\n{custom_prompt_input}" | |
logging.debug("kobold: Prompt being sent is {kobold_prompt}") | |
# FIXME | |
# Values literally c/p from the api docs.... | |
data = { | |
"max_context_length": 8096, | |
"max_length": 4096, | |
"prompt": f"{text}\n\n\n\n{custom_prompt_input}" | |
} | |
logging.debug("kobold: Submitting request to API endpoint") | |
print("kobold: Submitting request to API endpoint") | |
response = requests.post(kobold_api_IP, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("kobold: API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'results' in response_data and len(response_data['results']) > 0: | |
summary = response_data['results'][0]['text'].strip() | |
logging.debug("kobold: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") | |
return f"kobold: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("kobold: Error in processing: %s", str(e)) | |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" | |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API | |
def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions"): | |
loaded_config_data = load_and_log_configs() | |
try: | |
# API key validation | |
if api_key is None: | |
logging.info("ooba: API key not provided as parameter") | |
logging.info("ooba: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['ooba'] | |
if api_key is None or api_key.strip() == "": | |
logging.info("ooba: API key not found or is empty") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Oobabooga: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Oobabooga: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Oobabooga: Loaded data: {data}") | |
logging.debug(f"Oobabooga: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Oobabooga: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It | |
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are | |
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable | |
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}" | |
logging.debug("ooba: Prompt being sent is {ooba_prompt}") | |
data = { | |
"mode": "chat", | |
"character": "Example", | |
"messages": [{"role": "user", "content": ooba_prompt}] | |
} | |
logging.debug("ooba: Submitting request to API endpoint") | |
print("ooba: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data, verify=False) | |
logging.debug("ooba: API Response Data: %s", response) | |
if response.status_code == 200: | |
response_data = response.json() | |
summary = response.json()['choices'][0]['message']['content'] | |
logging.debug("ooba: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") | |
return f"ooba: API request failed with status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("ooba: Error in processing: %s", str(e)) | |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" | |
# FIXME - Install is more trouble than care to deal with right now. | |
def summarize_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"): | |
loaded_config_data = load_and_log_configs() | |
model = loaded_config_data['models']['tabby'] | |
# API key validation | |
if api_key is None: | |
logging.info("tabby: API key not provided as parameter") | |
logging.info("tabby: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['tabby'] | |
if api_key is None or api_key.strip() == "": | |
logging.info("tabby: API key not found or is empty") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("tabby: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("tabby: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"tabby: Loaded data: {data}") | |
logging.debug(f"tabby: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("tabby: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
data2 = { | |
'text': text, | |
'model': 'tabby' # Specify the model if needed | |
} | |
tabby_api_ip = loaded_config_data['local_apis']['tabby']['ip'] | |
try: | |
response = requests.post(tabby_api_ip, headers=headers, json=data2) | |
response.raise_for_status() | |
summary = response.json().get('summary', '') | |
return summary | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error summarizing with TabbyAPI: {e}") | |
return "Error summarizing with TabbyAPI." | |
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. | |
def summarize_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions"): | |
loaded_config_data = load_and_log_configs() | |
llm_model = loaded_config_data['models']['vllm'] | |
# API key validation | |
if api_key is None: | |
logging.info("vLLM: API key not provided as parameter") | |
logging.info("vLLM: Attempting to use API key from config file") | |
api_key = loaded_config_data['api_keys']['llama'] | |
if api_key is None or api_key.strip() == "": | |
logging.info("vLLM: API key not found or is empty") | |
vllm_client = OpenAI( | |
base_url=vllm_api_url, | |
api_key=custom_prompt_input | |
) | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("vLLM: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("vLLM: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"vLLM: Loaded data: {data}") | |
logging.debug(f"vLLM: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("vLLM: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
custom_prompt = custom_prompt_input | |
completion = client.chat.completions.create( | |
model=llm_model, | |
messages=[ | |
{"role": "system", "content": "You are a professional summarizer."}, | |
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} | |
] | |
) | |
vllm_summary = completion.choices[0].message.content | |
return vllm_summary | |
def save_summary_to_file(summary, file_path): | |
logging.debug("Now saving summary to file...") | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') | |
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) | |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
logging.info(f"Summary saved to file: {summary_file_path}") | |
# | |
# | |
####################################################################################################################### | |