tldw / App_Function_Libraries /Gradio_Related.py
oceansweep's picture
?
ed28876
raw
history blame
109 kB
# Gradio_Related.py
#########################################
# Gradio UI Functions Library
# This library is used to hold all UI-related functions for Gradio.
# I fucking hate Gradio.
#
#####
# Functions:
#
# download_audio_file(url, save_path)
# process_audio(
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
#
#
#########################################
#
# Built-In Imports
from datetime import datetime
import json
import logging
import os.path
from pathlib import Path
import sqlite3
from typing import Dict, List, Tuple
import traceback
from functools import wraps
#
# Import 3rd-Party Libraries
import yt_dlp
import gradio as gr
#
# Local Imports
from App_Function_Libraries.Article_Summarization_Lib import scrape_and_summarize_multiple
from App_Function_Libraries.Audio_Files import process_audio_files, process_podcast
from App_Function_Libraries.Chunk_Lib import improved_chunking_process, get_chat_completion
from App_Function_Libraries.PDF_Ingestion_Lib import process_and_cleanup_pdf
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import local_llm_gui_function
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_cohere, \
summarize_with_anthropic, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
summarize_with_huggingface, perform_summarization, save_transcription_and_summary, \
perform_transcription, summarize_chunk
from App_Function_Libraries.SQLite_DB import update_media_content, list_prompts, search_and_display, db, DatabaseError, \
fetch_prompt_details, keywords_browser_interface, add_keyword, delete_keyword, \
export_keywords_to_csv, export_to_file, add_media_to_database, insert_prompt_to_db
from App_Function_Libraries.Utils import sanitize_filename, extract_text_from_segments, create_download_directory, \
convert_to_seconds, load_comprehensive_config
from App_Function_Libraries.Video_DL_Ingestion_Lib import parse_and_expand_urls, \
generate_timestamped_url, extract_metadata, download_video
#
#######################################################################################################################
# Function Definitions
#
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
"distil-large-v2", "distil-medium.en", "distil-small.en"]
custom_prompt_input = None
server_mode = False
share_public = False
def load_preset_prompts():
return list_prompts()
def gradio_download_youtube_video(url):
"""Download video using yt-dlp with specified options."""
# Determine ffmpeg path based on the operating system.
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
# Extract information about the video
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False)
sanitized_title = sanitize_filename(info_dict['title'])
original_ext = info_dict['ext']
# Setup the final directory and filename
download_dir = Path(f"results/{sanitized_title}")
download_dir.mkdir(parents=True, exist_ok=True)
output_file_path = download_dir / f"{sanitized_title}.{original_ext}"
# Initialize yt-dlp with generic options and the output template
ydl_opts = {
'format': 'bestvideo+bestaudio/best',
'ffmpeg_location': ffmpeg_path,
'outtmpl': str(output_file_path),
'noplaylist': True, 'quiet': True
}
# Execute yt-dlp to download the video
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Final check to ensure file exists
if not output_file_path.exists():
raise FileNotFoundError(f"Expected file was not found: {output_file_path}")
return str(output_file_path)
def format_transcription(content):
# Add extra space after periods for better readability
content = content.replace('.', '. ').replace('. ', '. ')
# Split the content into lines for multiline display
lines = content.split('. ')
# Join lines with HTML line break for better presentation in Markdown
formatted_content = "<br>".join(lines)
return formatted_content
def format_file_path(file_path, fallback_path=None):
if file_path and os.path.exists(file_path):
logging.debug(f"File exists: {file_path}")
return file_path
elif fallback_path and os.path.exists(fallback_path):
logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}")
return fallback_path
else:
logging.debug(f"File does not exist: {file_path}. No fallback path available.")
return None
def search_media(query, fields, keyword, page):
try:
results = search_and_display(query, fields, keyword, page)
return results
except Exception as e:
logger = logging.getLogger()
logger.error(f"Error searching media: {e}")
return str(e)
# Sample data
prompts_category_1 = [
"What are the key points discussed in the video?",
"Summarize the main arguments made by the speaker.",
"Describe the conclusions of the study presented."
]
prompts_category_2 = [
"How does the proposed solution address the problem?",
"What are the implications of the findings?",
"Can you explain the theory behind the observed phenomenon?"
]
all_prompts = prompts_category_1 + prompts_category_2
# Handle prompt selection
def handle_prompt_selection(prompt):
return f"You selected: {prompt}"
def display_details(media_id):
# Gradio Search Function-related stuff
if media_id:
details = display_item_details(media_id)
details_html = ""
for detail in details:
details_html += f"<h4>Prompt:</h4><p>{detail[0]}</p>"
details_html += f"<h4>Summary:</h4><p>{detail[1]}</p>"
details_html += f"<h4>Transcription:</h4><pre>{detail[2]}</pre><hr>"
return details_html
return "No details available."
def fetch_items_by_title_or_url(search_query: str, search_type: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
if search_type == 'Title':
cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',))
elif search_type == 'URL':
cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by {search_type}: {e}")
def fetch_items_by_keyword(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT m.id, m.title, m.url
FROM Media m
JOIN MediaKeywords mk ON m.id = mk.media_id
JOIN Keywords k ON mk.keyword_id = k.id
WHERE k.keyword LIKE ?
""", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by keyword: {e}")
def fetch_items_by_content(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by content: {e}")
def fetch_item_details_single(media_id: int):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT prompt, summary
FROM MediaModifications
WHERE media_id = ?
ORDER BY modification_date DESC
LIMIT 1
""", (media_id,))
prompt_summary_result = cursor.fetchone()
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
content_result = cursor.fetchone()
prompt = prompt_summary_result[0] if prompt_summary_result else ""
summary = prompt_summary_result[1] if prompt_summary_result else ""
content = content_result[0] if content_result else ""
return prompt, summary, content
except sqlite3.Error as e:
raise Exception(f"Error fetching item details: {e}")
def fetch_item_details(media_id: int):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT prompt, summary
FROM MediaModifications
WHERE media_id = ?
ORDER BY modification_date DESC
LIMIT 1
""", (media_id,))
prompt_summary_result = cursor.fetchone()
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
content_result = cursor.fetchone()
prompt = prompt_summary_result[0] if prompt_summary_result else ""
summary = prompt_summary_result[1] if prompt_summary_result else ""
content = content_result[0] if content_result else ""
return content, prompt, summary
except sqlite3.Error as e:
logging.error(f"Error fetching item details: {e}")
return "", "", "" # Return empty strings if there's an error
def browse_items(search_query, search_type):
if search_type == 'Keyword':
results = fetch_items_by_keyword(search_query)
elif search_type == 'Content':
results = fetch_items_by_content(search_query)
else:
results = fetch_items_by_title_or_url(search_query, search_type)
return results
def display_item_details(media_id):
# Function to display item details
prompt_summary_results, content = fetch_item_details(media_id)
content_section = f"<h4>Transcription:</h4><pre>{content}</pre><hr>"
prompt_summary_section = ""
for prompt, summary in prompt_summary_results:
prompt_summary_section += f"<h4>Prompt:</h4><p>{prompt}</p>"
prompt_summary_section += f"<h4>Summary:</h4><p>{summary}</p><hr>"
return prompt_summary_section, content_section
def update_dropdown(search_query, search_type):
results = browse_items(search_query, search_type)
item_options = [f"{item[1]} ({item[2]})" for item in results]
new_item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results}
print(f"Debug - Update Dropdown - New Item Mapping: {new_item_mapping}")
return gr.update(choices=item_options), new_item_mapping
def get_media_id(selected_item, item_mapping):
return item_mapping.get(selected_item)
def update_detailed_view(item, item_mapping):
# Function to update the detailed view based on selected item
if item:
item_id = item_mapping.get(item)
if item_id:
content, prompt, summary = fetch_item_details(item_id)
if content or prompt or summary:
details_html = "<h4>Details:</h4>"
if prompt:
details_html += f"<h4>Prompt:</h4>{prompt}</p>"
if summary:
details_html += f"<h4>Summary:</h4>{summary}</p>"
# Format the transcription content for better readability
content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{format_transcription(content)}</div>"
return details_html, content_html
else:
return "No details available.", "No details available."
else:
return "No item selected", "No item selected"
else:
return "No item selected", "No item selected"
def format_content(content):
# Format content using markdown
formatted_content = f"```\n{content}\n```"
return formatted_content
def update_prompt_dropdown():
prompt_names = list_prompts()
return gr.update(choices=prompt_names)
def display_prompt_details(selected_prompt):
if selected_prompt:
details = fetch_prompt_details(selected_prompt)
if details:
details_str = f"<h4>Details:</h4><p>{details[0]}</p>"
system_str = f"<h4>System:</h4><p>{details[1]}</p>"
user_str = f"<h4>User:</h4><p>{details[2]}</p>" if details[2] else ""
return details_str + system_str + user_str
return "No details available."
def display_search_results(query):
if not query.strip():
return "Please enter a search query."
results = search_prompts(query)
# Debugging: Print the results to the console to see what is being returned
print(f"Processed search results for query '{query}': {results}")
if results:
result_md = "## Search Results:\n"
for result in results:
# Debugging: Print each result to see its format
print(f"Result item: {result}")
if len(result) == 2:
name, details = result
result_md += f"**Title:** {name}\n\n**Description:** {details}\n\n---\n"
else:
result_md += "Error: Unexpected result format.\n\n---\n"
return result_md
return "No results found."
def search_media_database(query: str) -> List[Tuple[int, str, str]]:
return browse_items(query, 'Title')
def load_media_content(media_id: int) -> dict:
try:
print(f"Debug - Load Media Content - Media ID: {media_id}")
item_details = fetch_item_details(media_id)
print(f"Debug - Load Media Content - Item Details: {item_details}")
if isinstance(item_details, tuple) and len(item_details) == 3:
content, prompt, summary = item_details
else:
print(f"Debug - Load Media Content - Unexpected item_details format: {item_details}")
content, prompt, summary = "", "", ""
return {
"content": content or "No content available",
"prompt": prompt or "No prompt available",
"summary": summary or "No summary available"
}
except Exception as e:
print(f"Debug - Load Media Content - Error: {str(e)}")
return {"content": "", "prompt": "", "summary": ""}
def load_preset_prompts():
return list_prompts()
def chat(message, history, media_content, selected_parts, api_endpoint, api_key, prompt):
try:
print(f"Debug - Chat Function - Message: {message}")
print(f"Debug - Chat Function - Media Content: {media_content}")
print(f"Debug - Chat Function - Selected Parts: {selected_parts}")
print(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
print(f"Debug - Chat Function - Prompt: {prompt}")
# Ensure selected_parts is a list
if not isinstance(selected_parts, (list, tuple)):
selected_parts = [selected_parts] if selected_parts else []
print(f"Debug - Chat Function - Selected Parts (after check): {selected_parts}")
# Combine the selected parts of the media content
combined_content = "\n\n".join([f"{part.capitalize()}: {media_content.get(part, '')}" for part in selected_parts if part in media_content])
print(f"Debug - Chat Function - Combined Content: {combined_content[:500]}...") # Print first 500 chars
# Prepare the input for the API
input_data = f"{combined_content}\n\nUser: {message}\nAI:"
print(f"Debug - Chat Function - Input Data: {input_data[:500]}...") # Print first 500 chars
# Use the existing API request code based on the selected endpoint
if api_endpoint.lower() == 'openai':
response = summarize_with_openai(api_key, input_data, prompt)
elif api_endpoint.lower() == "anthropic":
response = summarize_with_anthropic(api_key, input_data, prompt)
elif api_endpoint.lower() == "cohere":
response = summarize_with_cohere(api_key, input_data, prompt)
elif api_endpoint.lower() == "groq":
response = summarize_with_groq(api_key, input_data, prompt)
elif api_endpoint.lower() == "openrouter":
response = summarize_with_openrouter(api_key, input_data, prompt)
elif api_endpoint.lower() == "deepseek":
response = summarize_with_deepseek(api_key, input_data, prompt)
elif api_endpoint.lower() == "llama.cpp":
response = summarize_with_llama(input_data, prompt)
elif api_endpoint.lower() == "kobold":
response = summarize_with_kobold(input_data, api_key, prompt)
elif api_endpoint.lower() == "ooba":
response = summarize_with_oobabooga(input_data, api_key, prompt)
elif api_endpoint.lower() == "tabbyapi":
response = summarize_with_tabbyapi(input_data, prompt)
elif api_endpoint.lower() == "vllm":
response = summarize_with_vllm(input_data, prompt)
elif api_endpoint.lower() == "local-llm":
response = summarize_with_local_llm(input_data, prompt)
elif api_endpoint.lower() == "huggingface":
response = summarize_with_huggingface(api_key, input_data, prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
return response
except Exception as e:
logging.error(f"Error in chat function: {str(e)}")
return f"An error occurred: {str(e)}"
def save_chat_history(history: List[List[str]], media_content: Dict[str, str], selected_parts: List[str],
api_endpoint: str, prompt: str):
"""
Save the chat history along with context information to a JSON file.
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_history_{timestamp}.json"
chat_data = {
"timestamp": timestamp,
"history": history,
"context": {
"selected_media": {
part: media_content.get(part, "") for part in selected_parts
},
"api_endpoint": api_endpoint,
"prompt": prompt
}
}
json_data = json.dumps(chat_data, indent=2)
return filename, json_data
def error_handler(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
error_message = f"Error in {func.__name__}: {str(e)}"
logging.error(f"{error_message}\n{traceback.format_exc()}")
return {"error": error_message, "details": traceback.format_exc()}
return wrapper
def create_chunking_inputs():
chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=True)
max_words_input = gr.Number(label="Max Words", value=300, precision=0, visible=True)
chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False, visible=True)
max_sentences_input = gr.Number(label="Max Sentences", value=10, precision=0, visible=True)
chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False, visible=True)
max_paragraphs_input = gr.Number(label="Max Paragraphs", value=5, precision=0, visible=True)
chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=True)
max_tokens_input = gr.Number(label="Max Tokens", value=1000, precision=0, visible=True)
gr_semantic_chunk_long_file = gr.Checkbox(label="Semantic Chunking by Sentence similarity", value=False, visible=True)
gr_semantic_chunk_long_file_size = gr.Number(label="Max Chunk Size", value=2000, visible=True)
gr_semantic_chunk_long_file_overlap = gr.Number(label="Max Chunk Overlap Size", value=100, visible=True)
return [chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox, max_sentences_input,
chunk_text_by_paragraphs_checkbox, max_paragraphs_input, chunk_text_by_tokens_checkbox, max_tokens_input]
def create_video_transcription_tab():
with gr.TabItem("Video Transcription + Summarization"):
gr.Markdown("# Transcribe & Summarize Videos from URLs")
with gr.Row():
gr.Markdown("""Follow this project at [tldw - GitHub](https://github.com/rmusser01/tldw)""")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="URL(s) (Mandatory)",
placeholder="Enter video URLs here, one per line. Supports YouTube, Vimeo, and playlists.",
lines=5)
diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None, label="API Name (Mandatory)")
api_key_input = gr.Textbox(label="API Key (Mandatory)", placeholder="Enter your API key here")
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
value="default,no_keyword_set")
batch_size_input = gr.Slider(minimum=1, maximum=10, value=1, step=1,
label="Batch Size (Number of videos to process simultaneously)")
timestamp_option = gr.Radio(choices=["Include Timestamps", "Exclude Timestamps"],
value="Include Timestamps", label="Timestamp Option")
keep_original_video = gr.Checkbox(label="Keep Original Video", value=False)
# First, create a checkbox to toggle the chunking options
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
summarize_recursively = gr.Checkbox(label="Enable Recursive Summarization", value=False)
use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
use_time_input = gr.Checkbox(label="Use Start and End Time", value=False)
with gr.Row(visible=False) as time_input_box:
gr.Markdown("### Start and End time")
with gr.Column():
start_time_input = gr.Textbox(label="Start Time (Optional)",
placeholder="e.g., 1:30 or 90 (in seconds)")
end_time_input = gr.Textbox(label="End Time (Optional)", placeholder="e.g., 5:45 or 345 (in seconds)")
use_time_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_time_input],
outputs=[time_input_box]
)
cookies_input = gr.Textbox(
label="User Session Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
# Then, create a Box to group the chunking options
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'],
label="Chunking Language")
# Add JavaScript to toggle the visibility of the chunking options box
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
process_button = gr.Button("Process Videos")
with gr.Column():
progress_output = gr.Textbox(label="Progress")
error_output = gr.Textbox(label="Errors", visible=False)
results_output = gr.HTML(label="Results")
download_transcription = gr.File(label="Download All Transcriptions as JSON")
download_summary = gr.File(label="Download All Summaries as Text")
@error_handler
def process_videos_with_error_handling(urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video, summarize_recursively,
progress: gr.Progress = gr.Progress()) -> tuple:
try:
logging.info("Entering process_videos_with_error_handling")
logging.info(f"Received URLs: {urls}")
if not urls:
raise ValueError("No URLs provided")
logging.debug("Input URL(s) is(are) valid")
# Ensure batch_size is an integer
try:
batch_size = int(batch_size)
except (ValueError, TypeError):
batch_size = 1 # Default to processing one video at a time if invalid
expanded_urls = parse_and_expand_urls(urls)
logging.info(f"Expanded URLs: {expanded_urls}")
total_videos = len(expanded_urls)
logging.info(f"Total videos to process: {total_videos}")
results = []
errors = []
results_html = ""
all_transcriptions = {}
all_summaries = ""
for i in range(0, total_videos, batch_size):
batch = expanded_urls[i:i + batch_size]
batch_results = []
for url in batch:
try:
start_seconds = convert_to_seconds(start_time)
end_seconds = convert_to_seconds(end_time) if end_time else None
logging.info(f"Attempting to extract metadata for {url}")
video_metadata = extract_metadata(url, use_cookies, cookies)
if not video_metadata:
raise ValueError(f"Failed to extract metadata for {url}")
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
} if chunking_options_checkbox else None
result = process_url_with_metadata(
url, 2, whisper_model,
custom_prompt if custom_prompt_checkbox else None,
start_seconds, api_name, api_key,
False, False, False, False, 0.01, None, keywords, None, diarize,
end_time=end_seconds,
include_timestamps=(timestamp_option == "Include Timestamps"),
metadata=video_metadata,
use_chunking=chunking_options_checkbox,
chunk_options=chunk_options,
keep_original_video=keep_original_video
)
if result[0] is None: # Check if the first return value is None
error_message = "Processing failed without specific error"
batch_results.append((url, error_message, "Error", video_metadata, None, None))
errors.append(f"Error processing {url}: {error_message}")
else:
url, transcription, summary, json_file, summary_file, result_metadata = result
if transcription is None:
error_message = f"Processing failed for {url}: Transcription is None"
batch_results.append((url, error_message, "Error", result_metadata, None, None))
errors.append(error_message)
else:
batch_results.append(
(url, transcription, "Success", result_metadata, json_file, summary_file))
except Exception as e:
error_message = f"Error processing {url}: {str(e)}"
logging.error(error_message, exc_info=True)
batch_results.append((url, error_message, "Error", {}, None, None))
errors.append(error_message)
results.extend(batch_results)
if isinstance(progress, gr.Progress):
progress((i + len(batch)) / total_videos,
f"Processed {i + len(batch)}/{total_videos} videos")
# Generate HTML for results
for url, transcription, status, metadata, json_file, summary_file in results:
if status == "Success":
title = metadata.get('title', 'Unknown Title')
# Check if transcription is a string (which it should be now)
if isinstance(transcription, str):
# Split the transcription into metadata and actual transcription
parts = transcription.split('\n\n', 1)
if len(parts) == 2:
metadata_text, transcription_text = parts
else:
metadata_text = "Metadata not found"
transcription_text = transcription
else:
metadata_text = "Metadata format error"
transcription_text = "Transcription format error"
summary = open(summary_file, 'r').read() if summary_file else "No summary available"
results_html += f"""
<div class="result-box">
<gradio-accordion>
<gradio-accordion-item label="{title}">
<p><strong>URL:</strong> <a href="{url}" target="_blank">{url}</a></p>
<h4>Metadata:</h4>
<pre>{metadata_text}</pre>
<h4>Transcription:</h4>
<div class="transcription">{transcription_text}</div>
<h4>Summary:</h4>
<div class="summary">{summary}</div>
</gradio-accordion-item>
</gradio-accordion>
</div>
"""
logging.debug(f"Transcription for {url}: {transcription[:200]}...")
all_transcriptions[url] = transcription
all_summaries += f"Title: {title}\nURL: {url}\n\n{metadata_text}\n\nTranscription:\n{transcription_text}\n\nSummary:\n{summary}\n\n---\n\n"
else:
results_html += f"""
<div class="result-box error">
<h3>Error processing {url}</h3>
<p>{transcription}</p>
</div>
"""
# Save all transcriptions and summaries to files
with open('all_transcriptions.json', 'w') as f:
json.dump(all_transcriptions, f, indent=2)
with open('all_summaries.txt', 'w') as f:
f.write(all_summaries)
error_summary = "\n".join(errors) if errors else "No errors occurred."
return (
f"Processed {total_videos} videos. {len(errors)} errors occurred.",
error_summary,
results_html,
'all_transcriptions.json',
'all_summaries.txt'
)
except Exception as e:
logging.error(f"Unexpected error in process_videos_with_error_handling: {str(e)}", exc_info=True)
return (
f"An unexpected error occurred: {str(e)}",
str(e),
"<div class='result-box error'><h3>Unexpected Error</h3><p>" + str(e) + "</p></div>",
None,
None
)
def process_videos_wrapper(urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, summarize_recursively, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video):
try:
logging.info("process_videos_wrapper called")
result = process_videos_with_error_handling(
urls, start_time, end_time, diarize, whisper_model,
custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, api_name,
api_key, keywords, use_cookies, cookies, batch_size,
timestamp_option, keep_original_video, summarize_recursively
)
logging.info("process_videos_with_error_handling completed")
# Ensure that result is a tuple with 5 elements
if not isinstance(result, tuple) or len(result) != 5:
raise ValueError(
f"Expected 5 outputs, but got {len(result) if isinstance(result, tuple) else 1}")
return result
except Exception as e:
logging.error(f"Error in process_videos_wrapper: {str(e)}", exc_info=True)
# Return a tuple with 5 elements in case of any error
return (
f"An error occurred: {str(e)}", # progress_output
str(e), # error_output
f"<div class='error'>Error: {str(e)}</div>", # results_output
None, # download_transcription
None # download_summary
)
# FIXME - remove dead args for process_url_with_metadata
@error_handler
def process_url_with_metadata(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key,
vad_filter, download_video_flag, download_audio, rolling_summarization,
detail_level, question_box, keywords, local_file_path, diarize, end_time=None,
include_timestamps=True, metadata=None, use_chunking=False,
chunk_options=None, keep_original_video=False):
try:
logging.info(f"Starting process_url_metadata for URL: {url}")
# Create download path
download_path = create_download_directory("Video_Downloads")
logging.info(f"Download path created at: {download_path}")
# Initialize info_dict
info_dict = {}
# Handle URL or local file
if local_file_path:
video_file_path = local_file_path
# Extract basic info from local file
info_dict = {
'webpage_url': local_file_path,
'title': os.path.basename(local_file_path),
'description': "Local file",
'channel_url': None,
'duration': None,
'channel': None,
'uploader': None,
'upload_date': None
}
else:
# Extract video information
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
try:
full_info = ydl.extract_info(url, download=False)
# Create a safe subset of info to log
safe_info = {
'title': full_info.get('title', 'No title'),
'duration': full_info.get('duration', 'Unknown duration'),
'upload_date': full_info.get('upload_date', 'Unknown upload date'),
'uploader': full_info.get('uploader', 'Unknown uploader'),
'view_count': full_info.get('view_count', 'Unknown view count')
}
logging.debug(f"Full info extracted for {url}: {safe_info}")
except Exception as e:
logging.error(f"Error extracting video info: {str(e)}")
return None, None, None, None, None, None
# Filter the required metadata
if full_info:
info_dict = {
'webpage_url': full_info.get('webpage_url', url),
'title': full_info.get('title'),
'description': full_info.get('description'),
'channel_url': full_info.get('channel_url'),
'duration': full_info.get('duration'),
'channel': full_info.get('channel'),
'uploader': full_info.get('uploader'),
'upload_date': full_info.get('upload_date')
}
logging.debug(f"Filtered info_dict: {info_dict}")
else:
logging.error("Failed to extract video information")
return None, None, None, None, None, None
# Download video/audio
logging.info("Downloading video/audio...")
video_file_path = download_video(url, download_path, full_info, download_video_flag)
if not video_file_path:
logging.error(f"Failed to download video/audio from {url}")
return None, None, None, None, None, None
logging.info(f"Processing file: {video_file_path}")
# Perform transcription
logging.info("Starting transcription...")
audio_file_path, segments = perform_transcription(video_file_path, offset, whisper_model,
vad_filter)
if audio_file_path is None or segments is None:
logging.error("Transcription failed or segments not available.")
return None, None, None, None, None, None
logging.info(f"Transcription completed. Number of segments: {len(segments)}")
# Add metadata to segments
segments_with_metadata = {
"metadata": info_dict,
"segments": segments
}
# Save segments with metadata to JSON file
segments_json_path = os.path.splitext(audio_file_path)[0] + ".segments.json"
with open(segments_json_path, 'w') as f:
json.dump(segments_with_metadata, f, indent=2)
# Delete the .wav file after successful transcription
files_to_delete = [audio_file_path]
for file_path in files_to_delete:
if file_path and os.path.exists(file_path):
try:
os.remove(file_path)
logging.info(f"Successfully deleted file: {file_path}")
except Exception as e:
logging.warning(f"Failed to delete file {file_path}: {str(e)}")
# Delete the mp4 file after successful transcription if not keeping original audio
# Modify the file deletion logic to respect keep_original_video
if not keep_original_video:
files_to_delete = [audio_file_path, video_file_path]
for file_path in files_to_delete:
if file_path and os.path.exists(file_path):
try:
os.remove(file_path)
logging.info(f"Successfully deleted file: {file_path}")
except Exception as e:
logging.warning(f"Failed to delete file {file_path}: {str(e)}")
else:
logging.info(f"Keeping original video file: {video_file_path}")
logging.info(f"Keeping original audio file: {audio_file_path}")
# Process segments based on the timestamp option
if not include_timestamps:
segments = [{'Text': segment['Text']} for segment in segments]
logging.info(f"Segments processed for timestamp inclusion: {segments}")
# Extract text from segments
transcription_text = extract_text_from_segments(segments)
if transcription_text.startswith("Error:"):
logging.error(f"Failed to extract transcription: {transcription_text}")
return None, None, None, None, None, None
# Use transcription_text instead of segments for further processing
full_text_with_metadata = f"{json.dumps(info_dict, indent=2)}\n\n{transcription_text}"
logging.debug(f"Full text with metadata extracted: {full_text_with_metadata[:100]}...")
# Perform summarization if API is provided
summary_text = None
if api_name:
# API key resolution handled at base of function if none provided
api_key = api_key if api_key else None
logging.info(f"Starting summarization with {api_name}...")
summary_text = perform_summarization(api_name, full_text_with_metadata, custom_prompt, api_key)
if summary_text is None:
logging.error("Summarization failed.")
return None, None, None, None, None, None
logging.debug(f"Summarization completed: {summary_text[:100]}...")
# Save transcription and summary
logging.info("Saving transcription and summary...")
download_path = create_download_directory("Audio_Processing")
json_file_path, summary_file_path = save_transcription_and_summary(full_text_with_metadata,
summary_text,
download_path, info_dict)
logging.info(
f"Transcription and summary saved. JSON file: {json_file_path}, Summary file: {summary_file_path}")
# Prepare keywords for database
if isinstance(keywords, str):
keywords_list = [kw.strip() for kw in keywords.split(',') if kw.strip()]
elif isinstance(keywords, (list, tuple)):
keywords_list = keywords
else:
keywords_list = []
logging.info(f"Keywords prepared: {keywords_list}")
# Add to database
logging.info("Adding to database...")
add_media_to_database(info_dict['webpage_url'], info_dict, full_text_with_metadata, summary_text,
keywords_list, custom_prompt, whisper_model)
logging.info(f"Media added to database: {info_dict['webpage_url']}")
return info_dict[
'webpage_url'], full_text_with_metadata, summary_text, json_file_path, summary_file_path, info_dict
except Exception as e:
logging.error(f"Error in process_url_with_metadata: {str(e)}", exc_info=True)
return None, None, None, None, None, None
process_button.click(
fn=process_videos_wrapper,
inputs=[
url_input, start_time_input, end_time_input, diarize_input, whisper_model_input,
custom_prompt_checkbox, custom_prompt_input, chunking_options_checkbox,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language, summarize_recursively, api_name_input, api_key_input,
keywords_input, use_cookies_input, cookies_input, batch_size_input,
timestamp_option, keep_original_video
],
outputs=[progress_output, error_output, results_output, download_transcription, download_summary]
)
def create_audio_processing_tab():
with gr.TabItem("Audio File Transcription + Summarization"):
gr.Markdown("# Transcribe & Summarize Audio Files from URLs or Local Files!")
with gr.Row():
with gr.Column():
audio_url_input = gr.Textbox(label="Audio File URL(s)", placeholder="Enter the URL(s) of the audio file(s), one per line")
audio_file_input = gr.File(label="Upload Audio File", file_types=["audio/*"])
use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
cookies_input = gr.Textbox(
label="Audio Download Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None,
label="API for Summarization (Optional)"
)
api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here", type="password")
custom_keywords_input = gr.Textbox(label="Custom Keywords", placeholder="Enter custom keywords, comma-separated")
keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
process_audio_button = gr.Button("Process Audio File(s)")
with gr.Column():
audio_progress_output = gr.Textbox(label="Progress")
audio_transcription_output = gr.Textbox(label="Transcription")
audio_summary_output = gr.Textbox(label="Summary")
download_transcription = gr.File(label="Download All Transcriptions as JSON")
download_summary = gr.File(label="Download All Summaries as Text")
process_audio_button.click(
fn=process_audio_files,
inputs=[audio_url_input, audio_file_input, whisper_model_input, api_name_input, api_key_input,
use_cookies_input, cookies_input, keep_original_input, custom_keywords_input, custom_prompt_input,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking, use_multi_level_chunking,
chunk_language, diarize_input],
outputs=[audio_progress_output, audio_transcription_output, audio_summary_output]
)
def create_podcast_tab():
with gr.TabItem("Podcast"):
gr.Markdown("# Podcast Transcription and Ingestion")
with gr.Row():
with gr.Column():
podcast_url_input = gr.Textbox(label="Podcast URL", placeholder="Enter the podcast URL here")
podcast_title_input = gr.Textbox(label="Podcast Title", placeholder="Will be auto-detected if possible")
podcast_author_input = gr.Textbox(label="Podcast Author", placeholder="Will be auto-detected if possible")
podcast_keywords_input = gr.Textbox(
label="Keywords",
placeholder="Enter keywords here (comma-separated, include series name if applicable)",
value="podcast,audio",
elem_id="podcast-keywords-input"
)
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False, visible=True)
podcast_custom_prompt_input = gr.Textbox(
label="Custom Prompt",
placeholder="Enter custom prompt for summarization (optional)",
lines=3,
visible=False
)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[podcast_custom_prompt_input]
)
podcast_api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter", "Llama.cpp",
"Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value=None,
label="API Name for Summarization (Optional)"
)
podcast_api_key_input = gr.Textbox(label="API Key (if required)", type="password")
podcast_whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")
keep_original_input = gr.Checkbox(label="Keep original audio file", value=False)
enable_diarization_input = gr.Checkbox(label="Enable speaker diarization", value=False)
use_cookies_input = gr.Checkbox(label="Use cookies for yt-dlp", value=False)
cookies_input = gr.Textbox(
label="yt-dlp Cookies",
placeholder="Paste your cookies here (JSON format)",
lines=3,
visible=False
)
use_cookies_input.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_cookies_input],
outputs=[cookies_input]
)
chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
with gr.Row(visible=False) as chunking_options_box:
gr.Markdown("### Chunking Options")
with gr.Column():
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'], label="Chunking Method")
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
use_adaptive_chunking = gr.Checkbox(label="Use Adaptive Chunking")
use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'], label="Chunking Language")
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
podcast_process_button = gr.Button("Process Podcast")
with gr.Column():
podcast_progress_output = gr.Textbox(label="Progress")
podcast_error_output = gr.Textbox(label="Error Messages")
podcast_transcription_output = gr.Textbox(label="Transcription")
podcast_summary_output = gr.Textbox(label="Summary")
download_transcription = gr.File(label="Download Transcription as JSON")
download_summary = gr.File(label="Download Summary as Text")
podcast_process_button.click(
fn=process_podcast,
inputs=[podcast_url_input, podcast_title_input, podcast_author_input,
podcast_keywords_input, podcast_custom_prompt_input, podcast_api_name_input,
podcast_api_key_input, podcast_whisper_model_input, keep_original_input,
enable_diarization_input, use_cookies_input, cookies_input,
chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
use_multi_level_chunking, chunk_language],
outputs=[podcast_progress_output, podcast_transcription_output, podcast_summary_output,
podcast_title_input, podcast_author_input, podcast_keywords_input, podcast_error_output,
download_transcription, download_summary]
)
def create_website_scraping_tab():
with gr.TabItem("Website Scraping"):
gr.Markdown("# Scrape Websites & Summarize Articles using a Headless Chrome Browser!")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Article URLs", placeholder="Enter article URLs here, one per line", lines=5)
custom_article_title_input = gr.Textbox(label="Custom Article Titles (Optional, one per line)",
placeholder="Enter custom titles for the articles, one per line",
lines=5)
custom_prompt_input = gr.Textbox(label="Custom Prompt (Optional)",
placeholder="Provide a custom prompt for summarization", lines=3)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"], value=None, label="API Name (Mandatory for Summarization)")
api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)",
placeholder="Enter your API key here; Ignore if using Local API or Built-in API")
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
value="default,no_keyword_set", visible=True)
scrape_button = gr.Button("Scrape and Summarize")
with gr.Column():
result_output = gr.Textbox(label="Result", lines=20)
scrape_button.click(
fn=scrape_and_summarize_multiple,
inputs=[url_input, custom_prompt_input, api_name_input, api_key_input, keywords_input,
custom_article_title_input],
outputs=result_output
)
def create_pdf_ingestion_tab():
with gr.TabItem("PDF Ingestion"):
# TODO - Add functionality to extract metadata from pdf as part of conversion process in marker
gr.Markdown("# Ingest PDF Files and Extract Metadata")
with gr.Row():
with gr.Column():
pdf_file_input = gr.File(label="Uploaded PDF File", file_types=[".pdf"], visible=False)
pdf_upload_button = gr.UploadButton("Click to Upload PDF", file_types=[".pdf"])
pdf_title_input = gr.Textbox(label="Title (Optional)")
pdf_author_input = gr.Textbox(label="Author (Optional)")
pdf_keywords_input = gr.Textbox(label="Keywords (Optional, comma-separated)")
pdf_ingest_button = gr.Button("Ingest PDF")
pdf_upload_button.upload(fn=lambda file: file, inputs=pdf_upload_button, outputs=pdf_file_input)
with gr.Column():
pdf_result_output = gr.Textbox(label="Result")
pdf_ingest_button.click(
fn=process_and_cleanup_pdf,
inputs=[pdf_file_input, pdf_title_input, pdf_author_input, pdf_keywords_input],
outputs=pdf_result_output
)
#
#
################################################################################################################
# Functions for Re-Summarization
#
def create_resummary_tab():
with gr.TabItem("Re-Summarize"):
gr.Markdown("# Re-Summarize Existing Content")
with gr.Row():
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
api_name_input = gr.Dropdown(
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
value="Local-LLM", label="API Name")
api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here")
chunking_options_checkbox = gr.Checkbox(label="Use Chunking", value=False)
with gr.Row(visible=False) as chunking_options_box:
chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
label="Chunking Method", value='words')
max_chunk_size = gr.Slider(minimum=100, maximum=1000, value=300, step=50, label="Max Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=100, value=0, step=10, label="Chunk Overlap")
custom_prompt_checkbox = gr.Checkbox(label="Use Custom Prompt", value=False)
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter custom prompt here", lines=3, visible=False)
resummary_button = gr.Button("Re-Summarize")
result_output = gr.Textbox(label="Result")
# Connect the UI elements
search_button.click(
fn=update_resummary_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
chunking_options_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[chunking_options_checkbox],
outputs=[chunking_options_box]
)
custom_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input]
)
resummary_button.click(
fn=resummary_content_wrapper,
inputs=[items_output, item_mapping, api_name_input, api_key_input, chunking_options_checkbox, chunk_method,
max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt_input],
outputs=result_output
)
return search_query_input, search_type_input, search_button, items_output, item_mapping, api_name_input, api_key_input, chunking_options_checkbox, chunking_options_box, chunk_method, max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt_input, resummary_button, result_output
def update_resummary_dropdown(search_query, search_type):
if search_type in ['Title', 'URL']:
results = fetch_items_by_title_or_url(search_query, search_type)
elif search_type == 'Keyword':
results = fetch_items_by_keyword(search_query)
else: # Content
results = fetch_items_by_content(search_query)
item_options = [f"{item[1]} ({item[2]})" for item in results]
item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results}
return gr.update(choices=item_options), item_mapping
def resummary_content_wrapper(selected_item, item_mapping, api_name, api_key, chunking_options_checkbox, chunk_method,
max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt):
if not selected_item or not api_name or not api_key:
return "Please select an item and provide API details."
media_id = item_mapping.get(selected_item)
if not media_id:
return "Invalid selection."
content, old_prompt, old_summary = fetch_item_details(media_id)
if not content:
return "No content available for re-summarization."
# Prepare chunking options
chunk_options = {
'method': chunk_method,
'max_size': int(max_chunk_size),
'overlap': int(chunk_overlap),
'language': 'english',
'adaptive': True,
'multi_level': False,
} if chunking_options_checkbox else None
# Prepare summarization prompt
summarization_prompt = custom_prompt if custom_prompt_checkbox and custom_prompt else None
# Call the resummary_content function
result = resummary_content(media_id, content, api_name, api_key, chunk_options, summarization_prompt)
return result
def resummary_content(selected_item, item_mapping, api_name, api_key, chunking_options_checkbox, chunk_method, max_chunk_size, chunk_overlap, custom_prompt_checkbox, custom_prompt):
if not selected_item or not api_name or not api_key:
return "Please select an item and provide API details."
media_id = item_mapping.get(selected_item)
if not media_id:
return "Invalid selection."
content, old_prompt, old_summary = fetch_item_details(media_id)
if not content:
return "No content available for re-summarization."
# Load configuration
config = load_comprehensive_config()
# Prepare chunking options
chunk_options = {
'method': chunk_method,
'max_size': int(max_chunk_size),
'overlap': int(chunk_overlap),
'language': 'english',
'adaptive': True,
'multi_level': False,
}
# Chunking logic
if chunking_options_checkbox:
chunks = improved_chunking_process(content, chunk_options)
else:
chunks = [{'text': content, 'metadata': {}}]
# Prepare summarization prompt
if custom_prompt_checkbox and custom_prompt:
summarization_prompt = custom_prompt
else:
summarization_prompt = config.get('Prompts', 'default_summary_prompt', fallback="Summarize the following text:")
# Summarization logic
summaries = []
for chunk in chunks:
chunk_text = chunk['text']
try:
chunk_summary = summarize_chunk(api_name, chunk_text, summarization_prompt, api_key)
if chunk_summary:
summaries.append(chunk_summary)
else:
logging.warning(f"Summarization failed for chunk: {chunk_text[:100]}...")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
return f"Error during summarization: {str(e)}"
if not summaries:
return "Summarization failed for all chunks."
new_summary = " ".join(summaries)
# Update the database with the new summary
try:
update_result = update_media_content(selected_item, item_mapping, content, summarization_prompt, new_summary)
if "successfully" in update_result.lower():
return f"Re-summarization complete. New summary: {new_summary[:500]}..."
else:
return f"Error during database update: {update_result}"
except Exception as e:
logging.error(f"Error updating database: {str(e)}")
return f"Error updating database: {str(e)}"
# End of Re-Summarization Functions
#
##############################################################################################################
#
# Search Tab
def add_or_update_prompt(title, description, system_prompt, user_prompt):
if not title:
return "Error: Title is required."
existing_prompt = fetch_prompt_details(title)
if existing_prompt:
# Update existing prompt
result = update_prompt_in_db(title, description, system_prompt, user_prompt)
else:
# Insert new prompt
result = insert_prompt_to_db(title, description, system_prompt, user_prompt)
# Refresh the prompt dropdown
update_prompt_dropdown()
return result
def load_prompt_details(selected_prompt):
if selected_prompt:
details = fetch_prompt_details(selected_prompt)
if details:
return details[0], details[1], details[2], details[3]
return "", "", "", ""
def update_prompt_in_db(title, description, system_prompt, user_prompt):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute(
"UPDATE Prompts SET details = ?, system = ?, user = ? WHERE name = ?",
(description, system_prompt, user_prompt, title)
)
conn.commit()
conn.close()
return "Prompt updated successfully!"
except sqlite3.Error as e:
return f"Error updating prompt: {e}"
def search_prompts(query):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute("SELECT name, details, system, user FROM Prompts WHERE name LIKE ? OR details LIKE ?",
(f"%{query}%", f"%{query}%"))
results = cursor.fetchall()
conn.close()
return results
except sqlite3.Error as e:
print(f"Error searching prompts: {e}")
return []
def create_search_tab():
with gr.TabItem("Search / Detailed View"):
with gr.Row():
with gr.Column():
gr.Markdown("# Search across all ingested items in the Database")
gr.Markdown(" by Title / URL / Keyword / or Content via SQLite Full-Text-Search")
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[])
item_mapping = gr.State({})
prompt_summary_output = gr.HTML(label="Prompt & Summary", visible=True)
content_output = gr.Markdown(label="Content", visible=True)
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
with gr.Column():
items_output.change(
fn=update_detailed_view,
inputs=[items_output, item_mapping],
outputs=[prompt_summary_output, content_output]
)
def create_prompt_view_tab():
def display_search_results(query):
if not query.strip():
return "Please enter a search query."
results = search_prompts(query)
print(f"Processed search results for query '{query}': {results}")
if results:
result_md = "## Search Results:\n"
for result in results:
print(f"Result item: {result}")
if len(result) == 4:
name, details, system, user = result
result_md += f"**Title:** {name}\n\n"
result_md += f"**Description:** {details}\n\n"
result_md += f"**System Prompt:** {system}\n\n"
result_md += f"**User Prompt:** {user}\n\n"
result_md += "---\n"
else:
result_md += "Error: Unexpected result format.\n\n---\n"
return result_md
return "No results found."
with gr.TabItem("Search Prompts"):
with gr.Row():
with gr.Column():
gr.Markdown("# Search and View Prompt Details")
gr.Markdown("Currently has all of the https://github.com/danielmiessler/fabric prompts already available")
search_query_input = gr.Textbox(label="Search Prompts", placeholder="Enter your search query...")
search_button = gr.Button("Search Prompts")
with gr.Column():
search_results_output = gr.Markdown()
prompt_details_output = gr.HTML()
search_button.click(
fn=display_search_results,
inputs=[search_query_input],
outputs=[search_results_output]
)
def create_prompt_edit_tab():
with gr.TabItem("Edit Prompts"):
with gr.Row():
with gr.Column():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=[],
interactive=True
)
prompt_list_button = gr.Button("List Prompts")
with gr.Column():
title_input = gr.Textbox(label="Title", placeholder="Enter the prompt title")
description_input = gr.Textbox(label="Description", placeholder="Enter the prompt description", lines=3)
system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter the system prompt", lines=3)
user_prompt_input = gr.Textbox(label="User Prompt", placeholder="Enter the user prompt", lines=3)
add_prompt_button = gr.Button("Add/Update Prompt")
add_prompt_output = gr.HTML()
# Event handlers
prompt_list_button.click(
fn=update_prompt_dropdown,
outputs=prompt_dropdown
)
add_prompt_button.click(
fn=add_or_update_prompt,
inputs=[title_input, description_input, system_prompt_input, user_prompt_input],
outputs=add_prompt_output
)
# Load prompt details when selected
prompt_dropdown.change(
fn=load_prompt_details,
inputs=[prompt_dropdown],
outputs=[title_input, description_input, system_prompt_input, user_prompt_input]
)
# End of Search Tab Functions
#
################################################################################################################
#
# Llamafile Tab
def start_llamafile(*args):
# Unpack arguments
(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value,
model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value,
ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked,
port_value) = args
# Construct command based on checked values
command = []
if am_noob:
am_noob = True
if verbose_checked is not None and verbose_checked:
command.append('-v')
if threads_checked and threads_value is not None:
command.extend(['-t', str(threads_value)])
if http_threads_checked and http_threads_value is not None:
command.extend(['--threads', str(http_threads_value)])
if model_checked and model_value is not None:
model_path = model_value.name
command.extend(['-m', model_path])
if hf_repo_checked and hf_repo_value is not None:
command.extend(['-hfr', hf_repo_value])
if hf_file_checked and hf_file_value is not None:
command.extend(['-hff', hf_file_value])
if ctx_size_checked and ctx_size_value is not None:
command.extend(['-c', str(ctx_size_value)])
if ngl_checked and ngl_value is not None:
command.extend(['-ngl', str(ngl_value)])
if host_checked and host_value is not None:
command.extend(['--host', host_value])
if port_checked and port_value is not None:
command.extend(['--port', str(port_value)])
# Code to start llamafile with the provided configuration
local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value,
http_threads_checked, http_threads_value, model_checked,
model_value, hf_repo_checked, hf_repo_value, hf_file_checked,
hf_file_value, ctx_size_checked, ctx_size_value, ngl_checked,
ngl_value, host_checked, host_value, port_checked, port_value, )
# Example command output to verify
return f"Command built and ran: {' '.join(command)} \n\nLlamafile started successfully."
def stop_llamafile():
# Code to stop llamafile
# ...
return "Llamafile stopped"
def create_llamafile_settings_tab():
with gr.TabItem("Local LLM with Llamafile"):
gr.Markdown("# Settings for Llamafile")
am_noob = gr.Checkbox(label="Check this to enable sane defaults", value=False, visible=True)
advanced_mode_toggle = gr.Checkbox(label="Advanced Mode - Enable to show all settings", value=False)
model_checked = gr.Checkbox(label="Enable Setting Local LLM Model Path", value=False, visible=True)
model_value = gr.Textbox(label="Select Local Model File", value="", visible=True)
ngl_checked = gr.Checkbox(label="Enable Setting GPU Layers", value=False, visible=True)
ngl_value = gr.Number(label="Number of GPU Layers", value=None, precision=0, visible=True)
advanced_inputs = create_llamafile_advanced_inputs()
start_button = gr.Button("Start Llamafile")
stop_button = gr.Button("Stop Llamafile")
output_display = gr.Markdown()
start_button.click(
fn=start_llamafile,
inputs=[am_noob, model_checked, model_value, ngl_checked, ngl_value] + advanced_inputs,
outputs=output_display
)
def create_llamafile_advanced_inputs():
verbose_checked = gr.Checkbox(label="Enable Verbose Output", value=False, visible=False)
threads_checked = gr.Checkbox(label="Set CPU Threads", value=False, visible=False)
threads_value = gr.Number(label="Number of CPU Threads", value=None, precision=0, visible=False)
http_threads_checked = gr.Checkbox(label="Set HTTP Server Threads", value=False, visible=False)
http_threads_value = gr.Number(label="Number of HTTP Server Threads", value=None, precision=0, visible=False)
hf_repo_checked = gr.Checkbox(label="Use Huggingface Repo Model", value=False, visible=False)
hf_repo_value = gr.Textbox(label="Huggingface Repo Name", value="", visible=False)
hf_file_checked = gr.Checkbox(label="Set Huggingface Model File", value=False, visible=False)
hf_file_value = gr.Textbox(label="Huggingface Model File", value="", visible=False)
ctx_size_checked = gr.Checkbox(label="Set Prompt Context Size", value=False, visible=False)
ctx_size_value = gr.Number(label="Prompt Context Size", value=8124, precision=0, visible=False)
host_checked = gr.Checkbox(label="Set IP to Listen On", value=False, visible=False)
host_value = gr.Textbox(label="Host IP Address", value="", visible=False)
port_checked = gr.Checkbox(label="Set Server Port", value=False, visible=False)
port_value = gr.Number(label="Port Number", value=None, precision=0, visible=False)
return [verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value,
hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, ctx_size_checked, ctx_size_value,
host_checked, host_value, port_checked, port_value]
#
# End of Llamafile Tab Functions
################################################################################################################
#
# Chat Interface Tab Functions
def create_chat_interface():
with gr.TabItem("Remote LLM Chat"):
gr.Markdown("# Chat with a designated LLM Endpoint, using your selected item as starting context")
with gr.Row():
with gr.Column(scale=1):
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
with gr.Column(scale=2):
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
with gr.Row():
use_content = gr.Checkbox(label="Use Content")
use_summary = gr.Checkbox(label="Use Summary")
use_prompt = gr.Checkbox(label="Use Prompt")
api_endpoint = gr.Dropdown(label="Select API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"])
api_key = gr.Textbox(label="API Key (if required)", type="password")
preset_prompt = gr.Dropdown(label="Select Preset Prompt", choices=load_preset_prompts())
user_prompt = gr.Textbox(label="Modify Prompt (Need to delete this after the first message, otherwise it'll "
"be used as the next message instead)", lines=3)
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(label="Enter your message")
submit = gr.Button("Submit")
chat_history = gr.State([])
media_content = gr.State({})
selected_parts = gr.State([])
save_button = gr.Button("Save Chat History")
download_file = gr.File(label="Download Chat History")
def chat_wrapper(message, history, media_content, selected_parts, api_endpoint, api_key, user_prompt):
print(f"Debug - Chat Wrapper - Message: {message}")
print(f"Debug - Chat Wrapper - Media Content: {media_content}")
print(f"Debug - Chat Wrapper - Selected Parts: {selected_parts}")
print(f"Debug - Chat Wrapper - API Endpoint: {api_endpoint}")
print(f"Debug - Chat Wrapper - User Prompt: {user_prompt}")
selected_content = "\n\n".join(
[f"{part.capitalize()}: {media_content.get(part, '')}" for part in selected_parts if
part in media_content])
print(f"Debug - Chat Wrapper - Selected Content: {selected_content[:500]}...") # Print first 500 chars
context = f"Selected content:\n{selected_content}\n\nUser message: {message}"
print(f"Debug - Chat Wrapper - Context: {context[:500]}...") # Print first 500 chars
# Use a default API endpoint if none is selected
if not api_endpoint:
api_endpoint = "OpenAI" # You can change this to any default endpoint you prefer
print(f"Debug - Chat Wrapper - Using default API Endpoint: {api_endpoint}")
bot_message = chat(context, history, media_content, selected_parts, api_endpoint, api_key, user_prompt)
print(f"Debug - Chat Wrapper - Bot Message: {bot_message[:500]}...") # Print first 500 chars
history.append((message, bot_message))
return "", history
submit.click(
chat_wrapper,
inputs=[msg, chat_history, media_content, selected_parts, api_endpoint, api_key, user_prompt],
outputs=[msg, chatbot]
)
def save_chat_history(history):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_history_{timestamp}.json"
with open(filename, "w") as f:
json.dump(history, f)
return filename
save_button.click(save_chat_history, inputs=[chat_history], outputs=[download_file])
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
def update_user_prompt(preset_name):
details = fetch_prompt_details(preset_name)
if details:
return details[1] # Return the system prompt
return ""
preset_prompt.change(update_user_prompt, inputs=preset_prompt, outputs=user_prompt)
def update_chat_content(selected_item, use_content, use_summary, use_prompt, item_mapping):
print(f"Debug - Update Chat Content - Selected Item: {selected_item}")
print(f"Debug - Update Chat Content - Use Content: {use_content}")
print(f"Debug - Update Chat Content - Use Summary: {use_summary}")
print(f"Debug - Update Chat Content - Use Prompt: {use_prompt}")
print(f"Debug - Update Chat Content - Item Mapping: {item_mapping}")
if selected_item and selected_item in item_mapping:
media_id = item_mapping[selected_item]
content = load_media_content(media_id)
selected_parts = []
if use_content and "content" in content:
selected_parts.append("content")
if use_summary and "summary" in content:
selected_parts.append("summary")
if use_prompt and "prompt" in content:
selected_parts.append("prompt")
print(f"Debug - Update Chat Content - Content: {content}")
print(f"Debug - Update Chat Content - Selected Parts: {selected_parts}")
return content, selected_parts
else:
print(f"Debug - Update Chat Content - No item selected or item not in mapping")
return {}, []
items_output.change(
update_chat_content,
inputs=[items_output, use_content, use_summary, use_prompt, item_mapping],
outputs=[media_content, selected_parts]
)
def update_selected_parts(use_content, use_summary, use_prompt):
selected_parts = []
if use_content:
selected_parts.append("content")
if use_summary:
selected_parts.append("summary")
if use_prompt:
selected_parts.append("prompt")
print(f"Debug - Update Selected Parts: {selected_parts}")
return selected_parts
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
def update_selected_parts(use_content, use_summary, use_prompt):
selected_parts = []
if use_content:
selected_parts.append("content")
if use_summary:
selected_parts.append("summary")
if use_prompt:
selected_parts.append("prompt")
print(f"Debug - Update Selected Parts: {selected_parts}")
return selected_parts
use_content.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_summary.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
use_prompt.change(update_selected_parts, inputs=[use_content, use_summary, use_prompt],
outputs=[selected_parts])
# Add debug output
def debug_output(media_content, selected_parts):
print(f"Debug - Media Content: {media_content}")
print(f"Debug - Selected Parts: {selected_parts}")
return ""
items_output.change(debug_output, inputs=[media_content, selected_parts], outputs=[])
#
# End of Chat Interface Tab Functions
################################################################################################################
#
# Media Edit Tab Functions
def create_media_edit_tab():
with gr.TabItem("Edit Existing Items"):
gr.Markdown("# Search and Edit Media Items")
with gr.Row():
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", label="Search By")
search_button = gr.Button("Search")
with gr.Row():
items_output = gr.Dropdown(label="Select Item", choices=[], interactive=True)
item_mapping = gr.State({})
content_input = gr.Textbox(label="Edit Content", lines=10)
prompt_input = gr.Textbox(label="Edit Prompt", lines=3)
summary_input = gr.Textbox(label="Edit Summary", lines=5)
update_button = gr.Button("Update Media Content")
status_message = gr.Textbox(label="Status", interactive=False)
search_button.click(
fn=update_dropdown,
inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping]
)
def load_selected_media_content(selected_item, item_mapping):
if selected_item and item_mapping and selected_item in item_mapping:
media_id = item_mapping[selected_item]
content, prompt, summary = fetch_item_details(media_id)
return content, prompt, summary
return "No item selected or invalid selection", "", ""
items_output.change(
fn=load_selected_media_content,
inputs=[items_output, item_mapping],
outputs=[content_input, prompt_input, summary_input]
)
update_button.click(
fn=update_media_content,
inputs=[items_output, item_mapping, content_input, prompt_input, summary_input],
outputs=status_message
)
#
#
################################################################################################################
#
# Import Items Tab Functions
def import_data(file, title, author, keywords, custom_prompt, summary, auto_summarize, api_name, api_key):
if file is None:
return "No file uploaded. Please upload a file."
try:
logging.debug(f"File object type: {type(file)}")
logging.debug(f"File object attributes: {dir(file)}")
if hasattr(file, 'name'):
file_name = file.name
else:
file_name = 'unknown_file'
if isinstance(file, str):
# If file is a string, it's likely a file path
file_path = file
with open(file_path, 'r', encoding='utf-8') as f:
file_content = f.read()
elif hasattr(file, 'read'):
# If file has a 'read' method, it's likely a file-like object
file_content = file.read()
if isinstance(file_content, bytes):
file_content = file_content.decode('utf-8')
else:
# If it's neither a string nor a file-like object, try converting it to a string
file_content = str(file)
logging.debug(f"File name: {file_name}")
logging.debug(f"File content (first 100 chars): {file_content[:100]}")
# Create info_dict
info_dict = {
'title': title or 'Untitled',
'uploader': author or 'Unknown',
}
# Create segments (assuming one segment for the entire content)
segments = [{'Text': file_content}]
# Process keywords
keyword_list = [kw.strip() for kw in keywords.split(',') if kw.strip()]
# Handle summarization
if auto_summarize and api_name and api_key:
summary = perform_summarization(api_name, file_content, custom_prompt, api_key)
elif not summary:
summary = "No summary provided"
# Add to database
add_media_to_database(
url=file_name, # Using filename as URL
info_dict=info_dict,
segments=segments,
summary=summary,
keywords=keyword_list,
custom_prompt_input=custom_prompt,
whisper_model="Imported", # Indicating this was an imported file,
media_type = "document"
)
return f"File '{file_name}' successfully imported with title '{title}' and author '{author}'."
except Exception as e:
logging.error(f"Error importing file: {str(e)}")
return f"Error importing file: {str(e)}"
def create_import_item_tab():
with gr.TabItem("Import Items"):
gr.Markdown("# Import a markdown file or text file into the database")
gr.Markdown("...and have it tagged + summarized")
with gr.Row():
import_file = gr.File(label="Upload file for import", file_types=["txt", "md"])
with gr.Row():
title_input = gr.Textbox(label="Title", placeholder="Enter the title of the content")
author_input = gr.Textbox(label="Author", placeholder="Enter the author's name")
with gr.Row():
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords, comma-separated")
custom_prompt_input = gr.Textbox(label="Custom Prompt",
placeholder="Enter a custom prompt for summarization (optional)")
with gr.Row():
summary_input = gr.Textbox(label="Summary",
placeholder="Enter a summary or leave blank for auto-summarization", lines=3)
with gr.Row():
auto_summarize_checkbox = gr.Checkbox(label="Auto-summarize", value=False)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "HuggingFace"],
label="API for Auto-summarization"
)
api_key_input = gr.Textbox(label="API Key", type="password")
with gr.Row():
import_button = gr.Button("Import Data")
with gr.Row():
import_output = gr.Textbox(label="Import Status")
import_button.click(
fn=import_data,
inputs=[import_file, title_input, author_input, keywords_input, custom_prompt_input,
summary_input, auto_summarize_checkbox, api_name_input, api_key_input],
outputs=import_output
)
#
# End of Import Items Tab Functions
################################################################################################################
#
# Export Items Tab Functions
def create_export_tab():
with gr.Tab("Export"):
with gr.Tab("Export Search Results"):
search_query = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_fields = gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"])
keyword_input = gr.Textbox(
label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )",
placeholder="Enter keywords here...")
page_input = gr.Number(label="Page", value=1, precision=0)
results_per_file_input = gr.Number(label="Results per File", value=1000, precision=0)
export_format = gr.Radio(label="Export Format", choices=["csv", "markdown"], value="csv")
export_search_button = gr.Button("Export Search Results")
export_search_output = gr.File(label="Download Exported Keywords")
export_search_status = gr.Textbox(label="Export Status")
export_search_button.click(
fn=export_to_file,
inputs=[search_query, search_fields, keyword_input, page_input, results_per_file_input, export_format],
outputs=[export_search_status, export_search_output]
)
#
# End of Export Items Tab Functions
################################################################################################################
#
# Keyword Management Tab Functions
def create_export_keywords_tab():
with gr.Group():
with gr.Tab("Export Keywords"):
export_keywords_button = gr.Button("Export Keywords")
export_keywords_output = gr.File(label="Download Exported Keywords")
export_keywords_status = gr.Textbox(label="Export Status")
export_keywords_button.click(
fn=export_keywords_to_csv,
outputs=[export_keywords_status, export_keywords_output]
)
def create_view_keywords_tab():
with gr.TabItem("View Keywords"):
gr.Markdown("# Browse Keywords")
browse_output = gr.Markdown()
browse_button = gr.Button("View Existing Keywords")
browse_button.click(fn=keywords_browser_interface, outputs=browse_output)
def create_add_keyword_tab():
with gr.TabItem("Add Keywords"):
with gr.Row():
gr.Markdown("# Add Keywords to the Database")
add_input = gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here...")
add_button = gr.Button("Add Keywords")
with gr.Row():
add_output = gr.Textbox(label="Result")
add_button.click(fn=add_keyword, inputs=add_input, outputs=add_output)
def create_delete_keyword_tab():
with gr.Tab("Delete Keywords"):
with gr.Row():
gr.Markdown("# Delete Keywords from the Database")
delete_input = gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here...")
delete_button = gr.Button("Delete Keyword")
with gr.Row():
delete_output = gr.Textbox(label="Result")
delete_button.click(fn=delete_keyword, inputs=delete_input, outputs=delete_output)
#
# End of Keyword Management Tab Functions
################################################################################################################
#
# Utilities Tab Functions
def create_utilities_tab():
with gr.Group():
with gr.Tab("YouTube Video Downloader"):
gr.Markdown(
"<h3>Youtube Video Downloader</h3><p>This Input takes a Youtube URL as input and creates a webm file for you to download. </br><em>If you want a full-featured one:</em> <strong><em>https://github.com/StefanLobbenmeier/youtube-dl-gui</strong></em> or <strong><em>https://github.com/yt-dlg/yt-dlg</em></strong></p>")
youtube_url_input = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here")
download_button = gr.Button("Download Video")
output_file = gr.File(label="Download Video")
download_button.click(
fn=gradio_download_youtube_video,
inputs=youtube_url_input,
outputs=output_file
)
with gr.Tab("YouTube Audio Downloader"):
gr.Markdown(
"<h3>Youtube Audio Downloader</h3><p>This Input takes a Youtube URL as input and creates an audio file for you to download. </br><em>If you want a full-featured one:</em> <strong><em>https://github.com/StefanLobbenmeier/youtube-dl-gui</strong></em> or <strong><em>https://github.com/yt-dlg/yt-dlg</em></strong></p>")
youtube_url_input_audio = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here")
download_button_audio = gr.Button("Download Audio")
output_file_audio = gr.File(label="Download Audio")
# Implement the audio download functionality here
with gr.Tab("Grammar Checker"):
gr.Markdown("# Grammar Check Utility to be added...")
with gr.Tab("YouTube Timestamp URL Generator"):
gr.Markdown("## Generate YouTube URL with Timestamp")
with gr.Row():
url_input = gr.Textbox(label="YouTube URL")
hours_input = gr.Number(label="Hours", value=0, minimum=0, precision=0)
minutes_input = gr.Number(label="Minutes", value=0, minimum=0, maximum=59, precision=0)
seconds_input = gr.Number(label="Seconds", value=0, minimum=0, maximum=59, precision=0)
generate_button = gr.Button("Generate URL")
output_url = gr.Textbox(label="Timestamped URL")
generate_button.click(
fn=generate_timestamped_url,
inputs=[url_input, hours_input, minutes_input, seconds_input],
outputs=output_url
)
#
# End of Utilities Tab Functions
################################################################################################################
# FIXME - Prompt sample box
#
# # Sample data
# prompts_category_1 = [
# "What are the key points discussed in the video?",
# "Summarize the main arguments made by the speaker.",
# "Describe the conclusions of the study presented."
# ]
#
# prompts_category_2 = [
# "How does the proposed solution address the problem?",
# "What are the implications of the findings?",
# "Can you explain the theory behind the observed phenomenon?"
# ]
#
# all_prompts2 = prompts_category_1 + prompts_category_2
def launch_ui(share_public=None, server_mode=False):
share=share_public
css = """
.result-box {
margin-bottom: 20px;
border: 1px solid #ddd;
padding: 10px;
}
.result-box.error {
border-color: #ff0000;
background-color: #ffeeee;
}
.transcription, .summary {
max-height: 300px;
overflow-y: auto;
border: 1px solid #eee;
padding: 10px;
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("# TL/DW: Too Long, Didn't Watch - Your Personal Research Multi-Tool")
with gr.Tabs():
with gr.TabItem("Transcription / Summarization / Ingestion"):
with gr.Tabs():
create_video_transcription_tab()
create_audio_processing_tab()
create_podcast_tab()
create_website_scraping_tab()
create_pdf_ingestion_tab()
create_resummary_tab()
with gr.TabItem("Search / Detailed View"):
create_search_tab()
create_prompt_view_tab()
create_prompt_edit_tab()
with gr.TabItem("Local LLM with Llamafile"):
create_llamafile_settings_tab()
with gr.TabItem("Remote LLM Chat"):
create_chat_interface()
with gr.TabItem("Edit Existing Items"):
create_media_edit_tab()
with gr.TabItem("Keywords"):
with gr.Tabs():
create_view_keywords_tab()
create_add_keyword_tab()
create_delete_keyword_tab()
create_export_keywords_tab()
with gr.TabItem("Import/Export"):
create_import_item_tab()
create_export_tab()
with gr.TabItem("Utilities"):
create_utilities_tab()
# Launch the interface
server_port_variable = 7860
if share==True:
iface.launch(share=True)
elif server_mode and not share_public:
iface.launch(share=False, server_name="0.0.0.0", server_port=server_port_variable)
else:
iface.launch(share=False)