# RAG_Library_2.py # Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline. # # Import necessary modules and functions import configparser import logging import os from typing import Dict, Any, List, Optional # Local Imports #from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client from App_Function_Libraries.Article_Extractor_Lib import scrape_article from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media, \ fetch_keywords_for_media from App_Function_Libraries.Utils.Utils import load_comprehensive_config # # 3rd-Party Imports import openai # ######################################################################################################################## # # Functions: # Initialize OpenAI client (adjust this based on your API key management) openai.api_key = "your-openai-api-key" # Get the directory of the current script current_dir = os.path.dirname(os.path.abspath(__file__)) # Construct the path to the config file config_path = os.path.join(current_dir, 'Config_Files', 'config.txt') # Read the config file config = configparser.ConfigParser() # Read the configuration file config.read('config.txt') def generate_answer(api_choice: str, context: str, query: str) -> str: logging.debug("Entering generate_answer function") config = load_comprehensive_config() logging.debug(f"Config sections: {config.sections()}") prompt = f"Context: {context}\n\nQuestion: {query}" if api_choice == "OpenAI": from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai return summarize_with_openai(config['API']['openai_api_key'], prompt, "") elif api_choice == "Anthropic": from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "") elif api_choice == "Cohere": from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "") elif api_choice == "Groq": from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq return summarize_with_groq(config['API']['groq_api_key'], prompt, "") elif api_choice == "OpenRouter": from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "") elif api_choice == "HuggingFace": from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "") elif api_choice == "DeepSeek": from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "") elif api_choice == "Mistral": from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "") elif api_choice == "Local-LLM": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "") elif api_choice == "Llama.cpp": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama return summarize_with_llama(config['API']['llama_api_key'], prompt, "") elif api_choice == "Kobold": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "") elif api_choice == "Ooba": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "") elif api_choice == "TabbyAPI": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "") elif api_choice == "vLLM": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "") elif api_choice == "ollama": from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "") else: raise ValueError(f"Unsupported API choice: {api_choice}") def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]: fts_results = search_db(query, ["content"], "", page=1, results_per_page=5) filtered_fts_results = [ { "content": result['content'], "metadata": {"media_id": result['id']} } for result in fts_results if relevant_media_ids is None or result['id'] in relevant_media_ids ] return filtered_fts_results def fetch_relevant_media_ids(keywords: List[str]) -> List[int]: relevant_ids = set() try: for keyword in keywords: media_ids = fetch_keywords_for_media(keyword) relevant_ids.update(media_ids) except Exception as e: logging.error(f"Error fetching relevant media IDs: {str(e)}") return list(relevant_ids) # Example usage: # 1. Initialize the system: # create_tables(db) # Ensure FTS tables are set up # # 2. Create ChromaDB # chroma_client = ChromaDBClient() # # 3. Create Embeddings # Store embeddings in ChromaDB # preprocess_all_content() or create_embeddings() # # 4. Perform RAG search across all content: # result = rag_search("What are the key points about climate change?") # print(result['answer']) # # (Extra)5. Perform RAG on a specific URL: # result = rag_pipeline("https://example.com/article", "What is the main topic of this article?") # print(result['answer']) # ######################################################################################################################## ############################################################################################################ # # ElasticSearch Retriever # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch # # https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query # # End of RAG_Library_2.py ############################################################################################################