jaelin215 commited on
Commit
91a4da5
1 Parent(s): 4a70236

added training xgboost code

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -48,6 +48,16 @@ tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
48
  mental_classifier_model_path = "mental_health_model.pkl"
49
  mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path)
50
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  # Function to display Q-table
53
  def display_q_table(q_values, states, actions):
@@ -82,10 +92,10 @@ def speech_recognition_callback():
82
 
83
 
84
  def remove_html_tags(text):
85
- clean_text = re.sub("<.*?>", "", text)
 
86
  return clean_text
87
 
88
-
89
  # Initialize memory
90
  if "entered_text" not in st.session_state:
91
  st.session_state.entered_text = []
@@ -254,7 +264,7 @@ if user_message:
254
 
255
  llm_model = LLLResponseGenerator()
256
  temperature = 0.5
257
- max_length = 128
258
 
259
  # Collect all messages exchanged so far into a single text string
260
  all_messages = "\n".join(
@@ -271,6 +281,7 @@ if user_message:
271
  Response;
272
  """
273
  context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}"
 
274
 
275
  llm_response = llm_model.llm_inference(
276
  model_type="huggingface",
 
48
  mental_classifier_model_path = "mental_health_model.pkl"
49
  mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path)
50
 
51
+ if not os.path.exists(mental_classifier_model_path):
52
+ mental_classifier.initialize_tokenizer(tokenizer_model_name)
53
+ X, y = mental_classifier.preprocess_data()
54
+ y_test, y_pred = mental_classifier.train_model(X, y)
55
+ mental_classifier.save_model()
56
+ else:
57
+ mental_classifier.load_model()
58
+ mental_classifier.initialize_tokenizer(tokenizer_model_name) # Ensure tokenizer is initialized if loading model from pickle
59
+ X, y = mental_classifier.preprocess_data() # Preprocess data again if needed
60
+ mental_classifier.model.fit(X, y) # Fit the loaded model to the data
61
 
62
  # Function to display Q-table
63
  def display_q_table(q_values, states, actions):
 
92
 
93
 
94
  def remove_html_tags(text):
95
+ # clean_text = re.sub("<.*?>", "", text)
96
+ clean_text = re.sub(r'<.*?>|- |"|\\n', '', text)
97
  return clean_text
98
 
 
99
  # Initialize memory
100
  if "entered_text" not in st.session_state:
101
  st.session_state.entered_text = []
 
264
 
265
  llm_model = LLLResponseGenerator()
266
  temperature = 0.5
267
+ max_length = 128 * 4
268
 
269
  # Collect all messages exchanged so far into a single text string
270
  all_messages = "\n".join(
 
281
  Response;
282
  """
283
  context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}"
284
+ # context = f"You are a Mindful Media Mentor, dedicated to providing compassionate support and guidance to users facing mental health challenges. Your goal is to foster a safe and understanding environment where users feel heard and supported. Draw from your expertise to offer practical advice and resources, and encourage users to explore their feelings and experiences openly. Your responses should aim to empower users to take positive steps towards their well-being. {all_messages}"
285
 
286
  llm_response = llm_model.llm_inference(
287
  model_type="huggingface",