GLiNER_file / app.py
oliviercaron's picture
Update app.py
5af24b5 verified
raw
history blame
10.4 kB
import os
import csv
import streamlit as st
import polars as pl
from io import BytesIO, StringIO
from gliner import GLiNER
from gliner_file import run_ner
import time
import torch
import platform
from typing import List
from streamlit_tags import st_tags # Importing the st_tags component for labels
# Streamlit page configuration
st.set_page_config(
page_title="GLiNER",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to load data from the uploaded file
@st.cache_data
def load_data(file):
"""
Loads an uploaded CSV or Excel file with resilient detection of delimiters and types.
"""
with st.spinner("Loading data, please wait..."):
try:
_, file_ext = os.path.splitext(file.name)
if file_ext.lower() in [".xls", ".xlsx"]:
return load_excel(file)
elif file_ext.lower() == ".csv":
return load_csv(file)
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
except Exception as e:
st.error("Error loading data:")
st.error(str(e))
return None
def load_excel(file):
"""
Loads an Excel file using `BytesIO` and `polars` for reduced latency.
"""
try:
file_bytes = BytesIO(file.read())
df = pl.read_excel(file_bytes, read_options={"ignore_errors": True})
return df
except Exception as e:
raise ValueError(f"Error reading the Excel file: {str(e)}")
def load_csv(file):
"""
Loads a CSV file by detecting the delimiter and using the quote character to handle internal delimiters.
"""
try:
file.seek(0) # Reset file pointer to ensure reading from the beginning
raw_data = file.read()
try:
file_content = raw_data.decode('utf-8')
except UnicodeDecodeError:
try:
file_content = raw_data.decode('latin1')
except UnicodeDecodeError:
raise ValueError("Unable to decode the file. Ensure it is encoded in UTF-8 or Latin-1.")
delimiters = [",", ";", "|", "\t", " "]
for delimiter in delimiters:
try:
df = pl.read_csv(
StringIO(file_content),
separator=delimiter,
quote_char='"',
try_parse_dates=True,
ignore_errors=True,
truncate_ragged_lines=True
)
return df
except Exception:
continue
raise ValueError("Unable to load the file with common delimiters.")
except Exception as e:
raise ValueError(f"Error reading the CSV file: {str(e)}")
@st.cache_resource
def load_model():
"""
Loads the GLiNER model into memory to avoid multiple reloads.
"""
try:
gpu_available = torch.cuda.is_available()
with st.spinner("Loading the GLiNER model... Please wait."):
device = torch.device("cuda" if gpu_available else "cpu")
model = GLiNER.from_pretrained(
"urchade/gliner_multi-v2.1"
).to(device)
model.eval()
if gpu_available:
device_name = torch.cuda.get_device_name(0)
st.success(f"GPU detected: {device_name}. Model loaded on GPU.")
else:
cpu_name = platform.processor()
st.warning(f"No GPU detected. Using CPU: {cpu_name}")
return model
except Exception as e:
st.error("Error loading the model:")
st.error(str(e))
return None
def perform_ner(filtered_df, selected_column, labels_list, threshold):
"""
Executes named entity recognition (NER) on the filtered data.
"""
try:
texts_to_analyze = filtered_df[selected_column].to_list()
total_rows = len(texts_to_analyze)
ner_results_list = []
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time()
for index, text in enumerate(texts_to_analyze, 1):
if st.session_state.stop_processing:
progress_text.text("Processing stopped by user.")
break
ner_results = run_ner(
st.session_state.gliner_model,
[text],
labels_list,
threshold=threshold
)
ner_results_list.append(ner_results)
progress = index / total_rows
elapsed_time = time.time() - start_time
progress_bar.progress(progress)
progress_text.text(f"Progress: {index}/{total_rows} - {progress * 100:.0f}% (Elapsed time: {elapsed_time:.2f}s)")
for label in labels_list:
extracted_entities = []
for entities in ner_results_list:
texts = [entity["text"] for entity in entities[0] if entity["label"] == label]
concatenated_texts = ", ".join(texts) if texts else ""
extracted_entities.append(concatenated_texts)
filtered_df = filtered_df.with_columns(pl.Series(name=label, values=extracted_entities))
end_time = time.time()
st.success(f"Processing completed in {end_time - start_time:.2f} seconds.")
return filtered_df
except Exception as e:
st.error(f"Error during NER processing: {str(e)}")
return filtered_df
def main():
st.title("Use NER with GliNER on your data file")
st.markdown("Prototype v0.1")
st.write("""
This application performs named entity recognition (NER) on your text data using GLiNER.
**Instructions:**
1. Upload a CSV or Excel file.
2. Select the column containing the text to analyze.
3. Filter the data if necessary.
4. Enter the NER labels you wish to detect.
5. Click "Start NER" to begin processing.
""")
if "stop_processing" not in st.session_state:
st.session_state.stop_processing = False
if "threshold" not in st.session_state:
st.session_state.threshold = 0.4
if "labels_list" not in st.session_state:
st.session_state.labels_list = []
st.session_state.gliner_model = load_model()
if st.session_state.gliner_model is None:
return
uploaded_file = st.sidebar.file_uploader("Choose a file (CSV or Excel)")
if uploaded_file is None:
st.warning("Please upload a file to continue.")
return
df = load_data(uploaded_file)
if df is None:
return
selected_column = st.selectbox("Select the column containing the text:", df.columns)
filter_text = st.text_input("Filter the column by text", "")
if filter_text:
filtered_df = df.filter(pl.col(selected_column).str.contains(f"(?i).*{filter_text}.*"))
else:
filtered_df = df
st.write("Filtered data preview:")
rows_per_page = 100
total_rows = len(filtered_df)
total_pages = (total_rows - 1) // rows_per_page + 1
if "current_page" not in st.session_state:
st.session_state.current_page = 1
def update_page(new_page):
st.session_state.current_page = new_page
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
first = st.button("⏮️ First")
with col2:
previous = st.button("⬅️ Previous")
with col3:
pass
with col4:
next = st.button("Next ➡️")
with col5:
last = st.button("Last ⏭️")
if first:
update_page(1)
elif previous:
if st.session_state.current_page > 1:
update_page(st.session_state.current_page - 1)
elif next:
if st.session_state.current_page < total_pages:
update_page(st.session_state.current_page + 1)
elif last:
update_page(total_pages)
with col3:
st.markdown(f"Page **{st.session_state.current_page}** of **{total_pages}**")
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
if not filtered_df.is_empty():
current_page_data = filtered_df.slice(start_idx, end_idx - start_idx)
st.write(f"Displaying {start_idx + 1} to {end_idx} of {total_rows} rows")
st.dataframe(current_page_data.to_pandas(), use_container_width=True)
else:
st.warning("The filtered DataFrame is empty. Please check your filters.")
st.slider("Set confidence threshold", 0.0, 1.0, st.session_state.threshold, 0.01, key="threshold")
st.session_state.labels_list = st_tags(
label="Enter the NER labels to detect",
text="Add more labels as needed",
value=st.session_state.labels_list,
key="1"
)
col1, col2 = st.columns(2)
with col1:
start_button = st.button("Start NER")
with col2:
stop_button = st.button("Stop")
if start_button:
st.session_state.stop_processing = False
if not st.session_state.labels_list:
st.warning("Please enter labels for NER.")
else:
updated_df = perform_ner(filtered_df, selected_column, st.session_state.labels_list, st.session_state.threshold)
st.write("**NER Results:**")
st.dataframe(updated_df.to_pandas(), use_container_width=True)
def to_excel(df):
output = BytesIO()
df.write_excel(output)
return output.getvalue()
def to_csv(df):
return df.write_csv().encode('utf-8')
download_col1, download_col2 = st.columns(2)
with download_col1:
st.download_button(
label="📥 Download as Excel",
data=to_excel(updated_df),
file_name="ner_results.xlsx"#,
#mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
with download_col2:
st.download_button(
label="📥 Download as CSV",
data=to_csv(updated_df),
file_name="ner_results.csv"#,
#mime="text/csv",
)
if stop_button:
st.session_state.stop_processing = True
st.warning("Processing stopped by user.")
if __name__ == "__main__":
main()