omarhkh's picture
Update app.py
28ca5af
raw
history blame
6.3 kB
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url_input,image_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
xxresult=0
def detect_objects2(model_name,url_input,image_input,threshold,type2):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
keep = processed_outputs["scores"] > threshold
det_lab = processed_outputs["labels"][keep].tolist()
det_lab.count(1)
if det_lab.count(1) > 0:
total_text="Trench is Detected \n Not Blurry \n"
else:
total_text="Trench is NOT Detected \n Blurry \n"
xxresult=1
print(type2)
if det_lab.count(4) > 0:
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
else:
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
if type2=="Trench Depth Measurement":
xxresult=1
if det_lab.count(5) > 0:
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
else:
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
if type2=="Trench Width Measurement":
xxresult=1
return total_text
def tott():
if xxresult==0:
text2 = "The photo is ACCEPTED"
else:
text2 = "The photo is NOT ACCEPTED"
return text2
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
"""
models = ["omarhkh/detr-finetuned-omar8"]
types_class = ["Trench Depth Measurement", "Trench Width Measurement"]
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
#gr.Markdown(detect_objects2)
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
options2 = gr.Dropdown(choices=types_class,label='Select Classification Type',show_label=True)
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
img_but = gr.Button('Detect')
with gr.Blocks():
name = gr.Textbox(label="Final Result")
output = gr.Textbox(label="Reason for the results")
greet_btn = gr.Button("Results")
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
greet_btn.click(fn=tott, inputs=[], outputs=name, queue=True)
img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(enable_queue=True)