Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -68,12 +68,36 @@ def detect_objects(model_name,url_input,image_input,threshold):
|
|
68 |
|
69 |
#Make prediction
|
70 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
|
|
71 |
|
72 |
#Visualize prediction
|
73 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
74 |
|
75 |
return viz_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def set_example_image(example: list) -> dict:
|
78 |
return gr.Image.update(value=example[0])
|
79 |
|
@@ -105,6 +129,8 @@ demo = gr.Blocks(css=css)
|
|
105 |
with demo:
|
106 |
gr.Markdown(title)
|
107 |
gr.Markdown(description)
|
|
|
|
|
108 |
|
109 |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
110 |
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
|
@@ -121,6 +147,13 @@ with demo:
|
|
121 |
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
|
122 |
|
123 |
img_but = gr.Button('Detect')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
|
126 |
|
|
|
68 |
|
69 |
#Make prediction
|
70 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
71 |
+
print(processed_outputs)
|
72 |
|
73 |
#Visualize prediction
|
74 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
75 |
|
76 |
return viz_img
|
77 |
+
|
78 |
+
def detect_objects2(model_name,url_input,image_input,threshold):
|
79 |
+
|
80 |
+
#Extract model and feature extractor
|
81 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
82 |
+
|
83 |
+
|
84 |
|
85 |
+
model = DetrForObjectDetection.from_pretrained(model_name)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
image = image_input
|
91 |
+
|
92 |
+
#Make prediction
|
93 |
+
processed_outputs = make_prediction(image, feature_extractor, model)
|
94 |
+
print(processed_outputs)
|
95 |
+
|
96 |
+
#Visualize prediction
|
97 |
+
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
98 |
+
|
99 |
+
return processed_outputs
|
100 |
+
|
101 |
def set_example_image(example: list) -> dict:
|
102 |
return gr.Image.update(value=example[0])
|
103 |
|
|
|
129 |
with demo:
|
130 |
gr.Markdown(title)
|
131 |
gr.Markdown(description)
|
132 |
+
gr.Markdown(detect_objects2)
|
133 |
+
|
134 |
|
135 |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
136 |
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
|
|
|
147 |
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
|
148 |
|
149 |
img_but = gr.Button('Detect')
|
150 |
+
|
151 |
+
with gr.Blocks() as demo:
|
152 |
+
name = gr.Textbox(label="Name")
|
153 |
+
output = gr.Textbox(label="Results")
|
154 |
+
greet_btn = gr.Button("Results")
|
155 |
+
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input], outputs=output, queue=True)
|
156 |
+
|
157 |
|
158 |
|
159 |
|