Spaces:
Runtime error
Runtime error
match percentage added
Browse files
utils.py
CHANGED
@@ -2,7 +2,8 @@ import sys
|
|
2 |
import subprocess
|
3 |
import streamlit as st
|
4 |
import numpy as np
|
5 |
-
|
|
|
6 |
import collections
|
7 |
import ktrain
|
8 |
import pandas as pd
|
@@ -11,8 +12,12 @@ import neattext.functions as nfx
|
|
11 |
|
12 |
|
13 |
label_path = ("./data/labels.txt")
|
|
|
|
|
14 |
cols = ['cat', 'code']
|
15 |
label_df = pd.read_csv(label_path, names=cols, header=0)
|
|
|
|
|
16 |
|
17 |
|
18 |
def default_text():
|
@@ -36,11 +41,11 @@ def load_skill_extractor():
|
|
36 |
|
37 |
from spacy.matcher import PhraseMatcher
|
38 |
# init params of skill extractor
|
39 |
-
print('load model')
|
40 |
|
41 |
nlp = spacy.load('en_core_web_lg')
|
42 |
|
43 |
-
print('load matcher')
|
44 |
# init skill extractor
|
45 |
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher,)
|
46 |
return skill_extractor
|
@@ -63,10 +68,14 @@ def clean_text(text):
|
|
63 |
|
64 |
|
65 |
def predict_cat(model, text):
|
|
|
|
|
66 |
|
67 |
logits = model.predict(text,return_proba=True)
|
68 |
prob = int(logits.max()*100)
|
69 |
cat= label_df.iloc[logits.argmax()].values[0]
|
|
|
|
|
70 |
return prob,cat
|
71 |
|
72 |
|
@@ -84,27 +93,15 @@ def grouper(iterable):
|
|
84 |
yield group
|
85 |
|
86 |
|
87 |
-
def
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
skill_type = skill_extractor.skills_db[skill_id]['skill_type']
|
97 |
-
if skill_type == 'Soft Skill' and item['doc_node_value']:
|
98 |
-
soft_skill.append(item['doc_node_value'])
|
99 |
-
if skill_type == 'Hard Skill':
|
100 |
-
hard_skill.append(item['doc_node_value'])
|
101 |
-
# skill_dict['Soft Skill'] =set(soft_skill)
|
102 |
-
sk = " ".join(list(set(soft_skill)))
|
103 |
-
hk = " ".join(list(set(hard_skill)))
|
104 |
-
# st.write(skill_extractor.describe(annotations))
|
105 |
-
return sk+hk
|
106 |
-
except Exception as e:
|
107 |
-
return None
|
108 |
|
109 |
|
110 |
def install(package):
|
@@ -112,46 +109,6 @@ def install(package):
|
|
112 |
|
113 |
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
def create_ann_list(text, results):
|
118 |
-
try:
|
119 |
-
from skillNer.general_params import SKILL_DB
|
120 |
-
except:
|
121 |
-
# install skillner if not done yet
|
122 |
-
os.system('pip install skillner')
|
123 |
-
from skillNer.general_params import SKILL_DB
|
124 |
-
|
125 |
-
type_to_color = {'Hard Skill': "#faa",
|
126 |
-
'Soft Skill': '#afa', 'Certification': '#ff4'}
|
127 |
-
text_tokens = text.split(' ')
|
128 |
-
annots = {}
|
129 |
-
all_res = results['ngram_scored']+results['full_matches']
|
130 |
-
ids_done = []
|
131 |
-
# create annotations from matches
|
132 |
-
for match in all_res:
|
133 |
-
id_ = match['skill_id']
|
134 |
-
type_ = SKILL_DB[id_]['skill_type']
|
135 |
-
span_str = ' '.join([text_tokens[i] for i in match['doc_node_id']])
|
136 |
-
annot = annotation(span_str, type_, background=type_to_color[type_],
|
137 |
-
color="#333", margin='2px')
|
138 |
-
annots[match['doc_node_id'][0]] = annot
|
139 |
-
for i in match['doc_node_id']:
|
140 |
-
ids_done.append(i)
|
141 |
-
# create strs for non annotated text
|
142 |
-
non_match_ids = [i for i, _ in enumerate(text_tokens) if i not in ids_done]
|
143 |
-
dict_ = dict(enumerate(grouper(non_match_ids), 1))
|
144 |
-
for v in dict_.values():
|
145 |
-
span = ' '.join([text_tokens[i] for i in v])
|
146 |
-
annots[v[0]] = span
|
147 |
-
# annotation(token,color="#fff", background="transparent",)
|
148 |
-
print(dict_)
|
149 |
-
print('-----')
|
150 |
-
# print(collections.OrderedDict(sorted(annots.items())))
|
151 |
-
annots_ = collections.OrderedDict(sorted(annots.items())).values()
|
152 |
-
return annots_
|
153 |
-
|
154 |
-
|
155 |
def create_dfs(results):
|
156 |
try:
|
157 |
from skillNer.general_params import SKILL_DB
|
@@ -161,12 +118,13 @@ def create_dfs(results):
|
|
161 |
from skillNer.general_params import SKILL_DB
|
162 |
|
163 |
f_matches = results['full_matches']
|
164 |
-
|
165 |
for match in f_matches:
|
166 |
id_ = match['skill_id']
|
167 |
full_name = SKILL_DB[id_]['skill_name']
|
168 |
type_ = SKILL_DB[id_]['skill_type']
|
169 |
-
|
|
|
170 |
s_matches = results['ngram_scored']
|
171 |
s_arr = []
|
172 |
for match in s_matches:
|
@@ -174,9 +132,11 @@ def create_dfs(results):
|
|
174 |
full_name = SKILL_DB[id_]['skill_name']
|
175 |
type_ = SKILL_DB[id_]['skill_type']
|
176 |
score = match['score']
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
2 |
import subprocess
|
3 |
import streamlit as st
|
4 |
import numpy as np
|
5 |
+
import ast
|
6 |
+
# from annotated_text import annotation
|
7 |
import collections
|
8 |
import ktrain
|
9 |
import pandas as pd
|
|
|
12 |
|
13 |
|
14 |
label_path = ("./data/labels.txt")
|
15 |
+
top_skills= ("./data/top_50_hard_skills.csv")
|
16 |
+
|
17 |
cols = ['cat', 'code']
|
18 |
label_df = pd.read_csv(label_path, names=cols, header=0)
|
19 |
+
skcols = ['cat','skills']
|
20 |
+
top_skill_df = pd.read_csv(top_skills, names=skcols, header=0)
|
21 |
|
22 |
|
23 |
def default_text():
|
|
|
41 |
|
42 |
from spacy.matcher import PhraseMatcher
|
43 |
# init params of skill extractor
|
44 |
+
# print('load model')
|
45 |
|
46 |
nlp = spacy.load('en_core_web_lg')
|
47 |
|
48 |
+
# print('load matcher')
|
49 |
# init skill extractor
|
50 |
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher,)
|
51 |
return skill_extractor
|
|
|
68 |
|
69 |
|
70 |
def predict_cat(model, text):
|
71 |
+
# p = int(model.predict(text,return_proba=True).max()*100)
|
72 |
+
# cat = model.predict(text)
|
73 |
|
74 |
logits = model.predict(text,return_proba=True)
|
75 |
prob = int(logits.max()*100)
|
76 |
cat= label_df.iloc[logits.argmax()].values[0]
|
77 |
+
|
78 |
+
|
79 |
return prob,cat
|
80 |
|
81 |
|
|
|
93 |
yield group
|
94 |
|
95 |
|
96 |
+
def get_match(job_cat,cv_skills):
|
97 |
+
skills = top_skill_df[top_skill_df['cat'] == job_cat]['skills']
|
98 |
+
top_skills = set(ast.literal_eval(",".join(skills)))
|
99 |
+
cv_skills = set(cv_skills)
|
100 |
+
matched_skills = top_skills.intersection(cv_skills)
|
101 |
+
m = len(matched_skills)
|
102 |
+
d = len(top_skills)
|
103 |
+
match_p = round((m/10*100), 2)
|
104 |
+
return match_p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
def install(package):
|
|
|
109 |
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def create_dfs(results):
|
113 |
try:
|
114 |
from skillNer.general_params import SKILL_DB
|
|
|
118 |
from skillNer.general_params import SKILL_DB
|
119 |
|
120 |
f_matches = results['full_matches']
|
121 |
+
hard_skills =[]
|
122 |
for match in f_matches:
|
123 |
id_ = match['skill_id']
|
124 |
full_name = SKILL_DB[id_]['skill_name']
|
125 |
type_ = SKILL_DB[id_]['skill_type']
|
126 |
+
if type_ == 'Hard Skill':
|
127 |
+
hard_skills.append(full_name)
|
128 |
s_matches = results['ngram_scored']
|
129 |
s_arr = []
|
130 |
for match in s_matches:
|
|
|
132 |
full_name = SKILL_DB[id_]['skill_name']
|
133 |
type_ = SKILL_DB[id_]['skill_type']
|
134 |
score = match['score']
|
135 |
+
if type_ == 'Hard Skill':
|
136 |
+
hard_skills.append(full_name)
|
137 |
+
hard_skills =list(set(hard_skills))
|
138 |
+
# df = pd.DataFrame(
|
139 |
+
# # f_arr, columns=['skill id', 'skill name', 'skill type'])
|
140 |
+
# hard_skills, columns=['skill name'])
|
141 |
+
|
142 |
+
return hard_skills
|