Spaces:
Runtime error
Runtime error
File size: 9,654 Bytes
cdeb7b2 5604cd0 1d6a862 cdeb7b2 1d6a862 81c9675 cdeb7b2 1d6a862 9e64017 27e5f74 add9a1c 16c0bab c7e5683 807b3b1 6464518 de6817d 6464518 807b3b1 6464518 18809a3 de6817d 18809a3 de6817d 18809a3 aa23802 d14c86c c3f14a1 13469d1 de6817d 13469d1 18809a3 13469d1 66c6128 13469d1 66c6128 13469d1 66c6128 13469d1 66c6128 13469d1 66c6128 13469d1 5c6a6e5 16963ae 5c6a6e5 16963ae 13469d1 de392ff 13469d1 6388b89 81c9675 b40b15f 81c9675 c03dabe 81c9675 c03dabe 81c9675 74ba81a 1d6a862 74b2773 6388b89 b47262c 492fcab b47262c 6388b89 4bca50c 3997cd6 1b0b94c 3997cd6 4bca50c 4dd3fcf 4bca50c cdeb7b2 4bca50c 0d9856e 4bca50c 5bcfb6f 6388b89 1d6a862 0d9856e 16c0bab 0d9856e b40b15f 81c9675 b96e1f5 81c9675 0d9856e 16c0bab 0d9856e cdeb7b2 81c9675 4204dae 81c9675 3997cd6 cdeb7b2 4bca50c 1d6a862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
from gradio_pdf import PDF
from gradio_client import Client, handle_file
import os
# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable
# Initialize the Gradio Client for the specified API
client = Client("on1onmangoes/cnianswer101724v4", hf_token=HF_TOKEN)
client_name = ['primo','secondo','terzo','quarto4', 'quinto5', 'secondo6', 'sesto6', 'settimo7','ottavo8','nono9']
def stream_chat_with_rag(
message: str,
history: list,
client_name: str,
system_prompt: str,
num_retrieved_docs: int = 10,
num_docs_final: int = 9,
temperature: float = 0,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f"Message: {message}")
print(f"History: {history}")
# Build the conversation prompt including system prompt and history
conversation = f"{system_prompt}\n\nFor Client: {client_name}\n"
# Add previous conversation history
for user_input, assistant_response in history:
conversation += f"User: {user_input}\nAssistant: {assistant_response}\n"
# Add the current user message
conversation += f"User: {message}\nAssistant:"
# Call the API with the user's message
question = message
#answer = client.predict(question=question, api_name="/run_graph")
answer = client.predict(question=question,selected_document=client_name, api_name="/get_answer")
# Debugging: Print the raw response
print("Raw answer from API:")
print(answer)
# Format the assistant's answer and the relevant documents separately
formatted_answer = format_answer_string(answer)
# Update the conversation history with the new message and answer
history.append((message, formatted_answer))
# Return the formatted answer
return formatted_answer
def format_answer_string(answer: str):
"""
This function extracts and formats the assistant's response before document metadata.
Anything after the marker `[(` (where documents are listed) is ignored.
"""
# Step 1: Split the response at the start of the document metadata
split_marker = "[("
if split_marker in answer:
# Everything before the marker is the relevant answer
answer_before_docs = answer.split(split_marker)[0]
else:
# If no documents metadata, return the entire answer
answer_before_docs = answer
# Step 2: Clean up formatting by replacing escaped newline characters
formatted_answer = answer_before_docs.replace("\\n", "\n").strip()
# Step 3: Remove potential starting and ending artifacts like (' and ,) if present
if formatted_answer.startswith("(\"") and formatted_answer.endswith("\","):
formatted_answer = formatted_answer[2:-2].strip()
# Optional: Add a prefix for clarity
formatted_answer = "Co-Pilot: " + formatted_answer
return formatted_answer
def format_relevant_documents(relevant_docs: list):
"""
This function formats the relevant document metadata and content for readable output.
It extracts the heading, page number, and a snippet of the content from each document.
"""
formatted_docs = "Relevant Documents:\n\n"
for idx, (doc, score) in enumerate(relevant_docs):
# Extract the relevant metadata
heading = doc.metadata.get('heading', 'Unnamed Document')
page_number = int(doc.metadata.get('page_number', -1))
source = doc.metadata.get('source', 'Unknown Source')
confidence = round(score, 4) # Rounding the score for cleaner output
# Add the formatted details to the output string
formatted_docs += f"Document {idx + 1}:\n"
formatted_docs += f" - Heading: {heading}\n"
formatted_docs += f" - Page Number: {page_number}\n"
formatted_docs += f" - Source: {source}\n"
formatted_docs += f" - Confidence Score: {confidence}\n"
# Optionally include a snippet from the content
content_snippet = doc.page_content[:200] # Take the first 200 characters for preview
formatted_docs += f" - Content Snippet: {content_snippet}...\n\n"
return formatted_docs.strip()
# ------------------------------------- Core CNI APP ----------------------------------------------------------------------------------
# Function to handle PDF processing API call
def process_pdf(pdf_file, client_name):
return client.predict(
pdf_file=handle_file(pdf_file),
#client_name=client_name, # Hardcoded client name
api_name="/process_pdf"
)[1] # Return only the result string
# # Function to handle search API call
# def search_api(query):
# return client.predict(query=query, api_name="/search_with_confidence")
# Function to handle RAG API call
def rag_api(question, client_name):
return client.predict(question=question,selected_document=client_name, api_name="/get_answer")
def delete_index():
result = client.predict(api_name="/delete_index")
return result
#-------------------------------------- View PDF ----------------------------------------------------------------------------------
def view_pdf(pdf):
result = client.predict(api_name="/view_pdf_name")
return result
#-------------------------------------- UX & Gradio -------------------------------------------------------------------------------
# CSS for custom styling
CSS = """
# chat-container {
height: 100vh;
}
"""
# Title for the application
TITLE = "<h1 style='text-align:center;'>CNI RAG AGENTIC v0.2</h1>"
# Create the Gradio Blocks interface
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
with gr.Tab("Chat"):
chatbot = gr.Chatbot() # Create a chatbot interface
chat_interface = gr.ChatInterface(
fn=stream_chat_with_rag,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Dropdown(client_name,value="primo",label="Select Client", render=False,allow_custom_value=True),
gr.Textbox(
value="You are an expert assistant",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=10,
label="Number of Initial Documents to Retrieve",
render=False,
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=9,
label="Number of Final Documents to Retrieve",
render=False,
),
gr.Slider(
minimum=0.2,
maximum=1,
step=0.1,
value=0,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="Top P",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="Top K",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty",
render=False,
),
],
)
with gr.Tab("Process PDF"):
pdf_input = gr.File(label="Upload PDF File")
#select_client_dropdown = gr.Dropdown(client_name, value="rosariarossi", label="Select or Type Client", allow_custom_value=True)
pdf_output = gr.Textbox(label="PDF Result", interactive=False)
pdf_button = gr.Button("Process PDF")
pdf_button.click(
process_pdf,
inputs=[pdf_input], # Pass both PDF and client name is not required
outputs=pdf_output
)
with gr.Tab("Answer with RAG"):
question_input = gr.Textbox(label="Enter Question for RAG")
answer_with_rag_select_client_dropdown = gr.Dropdown(client_name, value="primo", label="Select or Type Client", allow_custom_value=True)
rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)
rag_button = gr.Button("Get Answer")
rag_button.click(
rag_api,
inputs=[question_input,answer_with_rag_select_client_dropdown ],
outputs=rag_output
)
with gr.Tab(label="Manage Files"):
with gr.Column():
delete_index_button = gr.Button("Delete All Files")
delete_index_textout = gr.Textbox(label="Deleted Files and Refresh Result")
delete_index_button.click(fn=delete_index, inputs=[],outputs=[delete_index_textout])
# Launch the app
if __name__ == "__main__":
demo.launch()
|