Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from collections import defaultdict | |
from gradio_leaderboard import Leaderboard, SelectColumns | |
# Load the DataFrame from the CSV file for detailed pass@k metrics | |
df = pd.read_csv('results.csv') | |
# Ensure 'Model' and 'Scenario' columns are strings | |
df['Model'] = df['Model'].astype(str) | |
df['Scenario'] = df['Scenario'].astype(str) | |
# Function to estimate pass@k | |
def estimate_pass_at_k(num_samples, num_correct, k): | |
def estimator(n, c, k): | |
if n - c < k: | |
return 1.0 | |
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) | |
return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)]) | |
# Function to calculate pass@k | |
def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]): | |
filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)] | |
num_samples = filtered_df['Runs'].values | |
num_correct = filtered_df['Successes'].values | |
pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values} | |
return pass_at_k | |
# Function to filter data and calculate pass@k | |
def filter_data(model, scenario): | |
pass_at_k = calculate_pass_at_k(df, model, scenario) | |
return pd.DataFrame([pass_at_k]) | |
# Initialize the leaderboard | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, | |
datatype=["markdown", "number", "number", "number"], # Specify the types of your columns | |
select_columns=SelectColumns( | |
default_selection=["Model", "pass@1", "pass@5", "pass@10"], # Columns to display by default | |
cant_deselect=[], # Columns that cannot be deselected | |
label="Select Columns to Display:", | |
), | |
search_columns=["Model"], # Columns that can be searched | |
hide_columns=[], # Columns to hide | |
filter_columns=[], # Filters for the columns | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
# Gradio interface | |
models = df['Model'].unique().tolist() | |
scenarios = df['Scenario'].unique().tolist() | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# π WebApp1K Models Leaderboard") | |
# Initialize leaderboard with the complete DataFrame | |
complete_pass_at_k = df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({ | |
'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(), | |
'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(), | |
'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean() | |
}, index=['pass@1', 'pass@5', 'pass@10'])).reset_index() | |
leaderboard = init_leaderboard(complete_pass_at_k) | |
model_input = gr.Dropdown(choices=models, label="Select Model") | |
scenario_input = gr.Dropdown(choices=scenarios, label="Select Category") | |
output = gr.DataFrame(headers=["pass@1", "pass@5", "pass@10"]) | |
filter_button = gr.Button("Filter") | |
filter_button.click(filter_data, inputs=[model_input, scenario_input], outputs=output) | |
# Launch the Gradio interface | |
demo.launch() | |